Yamin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9841896/publications.pdf

Version: 2024-02-01

20 papers 3,882 citations

16 h-index 752573 20 g-index

20 all docs

 $\begin{array}{c} 20 \\ \text{docs citations} \end{array}$

20 times ranked 4622 citing authors

#	Article	IF	CITATIONS
1	Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.	6.0	2,262
2	Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.	13.1	255
3	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	11.1	214
4	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	11.1	184
5	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	11.1	159
6	A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702870.	10.2	159
7	A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.	5.6	111
8	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	5.2	104
9	New Anthraceneâ€Fused Nonfullerene Acceptors for Highâ€Efficiency Organic Solar Cells: Energy Level Modulations Enabling Match of Donor and Acceptor. Advanced Energy Materials, 2019, 9, 1803541.	10.2	95
10	Achieving Both Enhanced Voltage and Current through Fine‶uning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	10.2	73
11	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	10.2	69
12	A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.	11.1	48
13	The design of quinoxaline based unfused non-fullerene acceptors for high performance and stable organic solar cells. Chemical Engineering Journal, 2022, 427, 131473.	6.6	32
14	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	5.2	26
15	Synergistic Modifications of Side Chains and End Groups in Small Molecular Acceptors for High Efficient Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800053.	3.1	23
16	Non-fullerene acceptors based on multiple non-covalent interactions for low cost and air stable organic solar cells. Organic Electronics, 2021, 93, 106132.	1.4	18
17	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	4.2	16
18	Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of Chemistry, 2015, 33, 852-858.	2.6	15

YAMIN ZHANG

#	Article	IF	CITATION
19	Fluorination-modulated end units for high-performance non-fullerene acceptors based organic solar cells. Science China Materials, 2019, 62, 1210-1217.	3.5	14
20	Unfused-ring small molecule acceptors based on A1-D-A2-D-A1 architecture with low non-radiative energy loss and excellent air stability. Materials Today Energy, 2021, 21, 100802.	2.5	5