Hidetaka Tobita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/984179/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimensions of Crosslinked Polymers without Rings. Macromolecular Theory and Simulations, 2022, 31,	0.6	6
2	Dimensions of Network Polymers. Macromolecular Theory and Simulations, 2022, 31, .	0.6	3
3	Relationship between Branched Structure and Viscoelastic Properties of Highly Branched Polyethylene Derived by Monte Carlo Molecular Simulation and the BoBâ€Rheology Simulation Methods. Macromolecular Theory and Simulations, 2021, 30, 2000069.	0.6	1
4	Effect of Branch Point Distribution on the Radius of Gyration in Batch Freeâ€Radical Polymerization with Chain Transfer to Polymer. Macromolecular Theory and Simulations, 2021, 30, 2000036.	0.6	2
5	Distributions of Molecular Weights and 3D Sizes of Hyperbranched Polymers Formed in Batch Selfâ€Condensing Vinyl Polymerization. Macromolecular Theory and Simulations, 2021, 30, 2000052.	0.6	1
6	Gel Point Properties in Batch Freeâ€Radical Vinyl/Divinyl Copolymerization. Macromolecular Reaction Engineering, 2021, 15, 2100018.	0.9	3
7	Bivariate Distribution and Related Analytical Solutions for Batch Stepâ€Growth Polymerization of AB 2 â€Type Monomer. Macromolecular Theory and Simulations, 2020, 29, 1900049.	0.6	2
8	Random Branching of Polymer Chains with Schulz–Zimm Distribution. 1. Bivariate Distribution and Related Formulae. Macromolecular Theory and Simulations, 2020, 29, 1900056.	0.6	4
9	Random Branching of Polymer Chains with Schulz–Zimm Distribution. 2. Radius of Gyration and Maximum Span Length. Macromolecular Theory and Simulations, 2020, 29, 1900057.	0.6	6
10	Universal Relationships in Branched Architecture Formed in Conventional and Living Emulsion Polymerization. Macromolecular Theory and Simulations, 2019, 28, 1900018.	0.6	7
11	Universal Relationships in Hyperbranched Polymer Architecture for Batch and Continuous Step Growth Polymerization of AB2-Type Monomers. Processes, 2019, 7, 220.	1.3	14
12	Detailed Structural Analysis of the Hyperbranched Polymers Formed in Self ondensing Vinyl Polymerization. Macromolecular Theory and Simulations, 2019, 28, 1800061.	0.6	13
13	Modelâ€Based Reactor Design to Control Hyperbranched Polymer Architecture. Macromolecular Reaction Engineering, 2018, 12, 1700065.	0.9	5
14	Hyperbranched Polymers Formed Through Selfâ€Condensing Vinyl Polymerization in a Continuous Stirredâ€Tank Reactor (CSTR): 2. Branched Architecture. Macromolecular Theory and Simulations, 2018, 27, 1800028.	0.6	3
15	Hyperbranched Polymers Formed Through Self ondensing Vinyl Polymerization in a Continuous Stirredâ€Tank Reactor (CSTR): 1. Molecular Weight Distribution. Macromolecular Theory and Simulations, 2018, 27, 1800027.	0.6	7
16	Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process. Processes, 2018, 6, 14.	1.3	7
17	Hyperbranched Polymers Formed through Irreversible Step Polymerization of AB ₂ â€₹ype Monomer in a Continuous Flow Stirredâ€₹ank Reactor (CSTR). Macromolecular Theory and Simulations, 2017, 26, 1600078.	0.6	9
18	Hyperbranched Polymers Formed Through Irreversible Step Polymerization of AB ₂ â€Type Monomer with Substitution Effect in a Continuous Flow Stirredâ€Tank Reactor (CSTR). Macromolecular Theory and Simulations, 2017, 26, 1700020.	0.6	9

ΗΙΔΕΤΑΚΑ ΤΟΒΙΤΑ

#	Article	IF	CITATIONS
19	Molecular Weight Distribution of Core Cross-Linked Star Polymers. Macromolecular Theory and Simulations, 2017, 26, 1600037.	0.6	2
20	Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization. Polymers, 2016, 8, 155.	2.0	8
21	Universality in Branching Frequencies and Molecular Dimensions during Hyperbranched Polymer Formation: Step Polymerization of AB ₂ Type Monomer with Equal Reactivity. Macromolecular Theory and Simulations, 2016, 25, 116-122.	0.6	12
22	Universality in Branching Frequencies and Molecular Dimensions during Hyperbranched Polymer Formation: 2. Step Polymerization of AB ₂ Type Monomer with Different Reactivity for the Second B Group. Macromolecular Theory and Simulations, 2016, 25, 123-133.	0.6	10
23	Continuous Tanksâ€inâ€6eries Process for Freeâ€Radical Polymerization with Longâ€Chain Branching and Scission: Effect of the Order of a Large Tank. Macromolecular Reaction Engineering, 2015, 9, 556-569.	0.9	8
24	Model-Based Reactor Design in Free-Radical Polymerization with Simultaneous Long-Chain Branching and Scission. Processes, 2015, 3, 731-748.	1.3	8
25	Markovian Approach to Freeâ€Radical Polymerization with Simultaneous Longâ€Chain Branching and Scission: Effect of Branching and Scission Kinetics. Macromolecular Reaction Engineering, 2015, 9, 245-258.	0.9	6
26	Markovian Approach to Self ondensing Vinyl Polymerization: Distributions of Molecular Weights, Degrees of Branching, and Molecular Dimensions. Macromolecular Theory and Simulations, 2015, 24, 117-132.	0.6	19
27	Experimental Method to Discriminate RAFT Models between Intermediate Termination and Slow Fragmentation via Comparison of Rates of Miniemulsion and Bulk Polymerization. Macromolecular Theory and Simulations, 2014, 23, 136-146.	0.6	20
28	Modeling and Simulation of Complex Polymerization Reactions. Macromolecular Theory and Simulations, 2014, 23, 107-109.	0.6	2
29	Continuous Freeâ€Radical Polymerization with Longâ€Chain Branching and Scission in a Tanksâ€inâ€Series Model. Macromolecular Theory and Simulations, 2014, 23, 182-197.	0.6	25
30	Freeâ€Radical Polymerization with Longâ€Chain Branching and Scission: Markovian Solution of the Weightâ€Average Molecular Weight. Macromolecular Theory and Simulations, 2014, 23, 477-489.	0.6	15
31	On the Discrimination of <scp>RAFT</scp> Models Using Miniemulsion Polymerization. Macromolecular Theory and Simulations, 2013, 22, 399-409.	0.6	10
32	Freeâ€Radical Polymerization with Longâ€Chain Branching and Scission in a Continuous Stirredâ€Tank Reactor. Macromolecular Reaction Engineering, 2013, 7, 181-192.	0.9	32
33	Experimental Validation of Intermediate Termination in RAFT Polymerization with Dithiobenzoate via Comparison of Miniemulsion and Bulk Polymerization Rates. Macromolecular Reaction Engineering, 2012, 6, 17-23.	0.9	27
34	3E1346 3-D FRET Analysis for Constructing An Atomic Model of the F-actin and Tn Core Domain Complex in the Reconstituted Thin Filament(3E Muscle 2,The 49th Annual Meeting of the Biophysical Society of) Tj ETQqC) O@øgBT	/Oøerlock 10
35	Effects of Fluctuation and Segregation in the Rate Acceleration of ATRP Miniemulsion Polymerization. Macromolecular Theory and Simulations, 2011, 20, 179-190.	0.6	21

0.6 11

³⁶ Effects of Retardation and Variation of Monomer Concentration in RAFT Miniemulsion Polymerization. Macromolecular Theory and Simulations, 2011, 20, 709-720.

#	Article	IF	CITATIONS
37	Threshold Particle Diameters in Miniemulsion Reversible-Deactivation Radical Polymerization. Polymers, 2011, 3, 1944-1971.	2.0	13
38	Change and Convergence of Polymer Distribution During Nonrandom Degradation. Macromolecular Reaction Engineering, 2010, 4, 333-341.	0.9	11
39	Modeling Controlled/Living Radical Polymerization Kinetics: Bulk and Miniemulsion. Macromolecular Reaction Engineering, 2010, 4, 643-662.	0.9	39
40	Fundamentals of RAFT Miniemulsion Polymerization Kinetics. Macromolecular Symposia, 2010, 288, 16-24.	0.4	18
41	Effects of Nano-Sized Polymerization Locus on the Kinetics of Controlled/Living Radical Polymerization. , 2010, , 263-305.		2
42	RAFT Miniemulsion Polymerization Kinetics, 1 $\hat{a} \in$ Polymerization Rate. Macromolecular Theory and Simulations, 2009, 18, 108-119.	0.6	39
43	RAFT Miniemulsion Polymerization Kinetics, 2 – Molecular Weight Distribution. Macromolecular Theory and Simulations, 2009, 18, 120-126.	0.6	32
44	Fundamental Molecular Weight Distribution of RAFT Polymers. Macromolecular Reaction Engineering, 2008, 2, 371-381.	0.9	26
45	Kinetics of Controlled/Living Radical Polymerization in Emulsified Systems. Macromolecular Symposia, 2008, 261, 36-45.	0.4	26
46	Polymer Distribution Change During Irreversible Depolymerization by Chain-End Scission. Macromolecular Theory and Simulations, 2007, 16, 399-406.	0.6	9
47	Monte Carlo Simulation of Controlled/Living Radical Polymerization in Emulsified Systems. Macromolecular Theory and Simulations, 2007, 16, 476-488.	0.6	87
48	Kinetics of Stable Free Radical Mediated Polymerization inside Submicron Particles. Macromolecular Theory and Simulations, 2007, 16, 810-823.	0.6	45
49	Molecular Weight Distribution of Living Radical Polymers. Macromolecular Theory and Simulations, 2006, 15, 12-22.	0.6	51
50	Molecular Weight Distribution of Living Radical Polymers. Macromolecular Theory and Simulations, 2006, 15, 23-31.	0.6	39
51	Power-law distribution of molecular weights of nonlinear emulsion polymers. E-Polymers, 2005, 5, .	1.3	3
52	Scale-Free Power-Law Distribution of Emulsion-Polymerized Branched Polymers: Power Exponent of the Molecular Weight Distribution. Macromolecular Materials and Engineering, 2005, 290, 363-371.	1.7	11
53	Scale-free power-law distribution of branched polymers formed in a continuously stirred tank reactor: Simple relationship for the exponent. E-Polymers, 2004, 4, .	1.3	0
54	Heterochain model for simultaneous long-chain branching and crosslinking. I. Matrix formula for the weight-average molecular weights. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2780-2790.	2.4	3

#	Article	IF	CITATIONS
55	Heterochain model for simultaneous long-chain branching and crosslinking. II. Application to free-radical polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2791-2800.	2.4	5
56	Heterochain model for simultaneous long-chain branching and crosslinking. III. Multicomponent polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2801-2812.	2.4	2
57	Scale-Free Power-Law Distribution of Emulsion-Polymerized Nonlinear Polymers:  Free-Radical Polymerization with Chain Transfer to Polymer. Macromolecules, 2004, 37, 585-589.	2.2	13
58	Scale-free power-law distribution of nonlinear polymers formed in a homeostatic system. E-Polymers, 2004, 4, .	1.3	0
59	Multivariate Composition Distribution in Free-Radical Multicomponent Polymerization, 1. Macromolecular Theory and Simulations, 2003, 12, 463-469.	0.6	8
60	Multivariate Composition Distribution in Free-Radical Multicomponent Polymerization, 2. Macromolecular Theory and Simulations, 2003, 12, 470-475.	0.6	4
61	Molecular Weight Development during Simultaneous Chain Scission, Long-Chain Branching and Crosslinking, 1. Macromolecular Theory and Simulations, 2003, 12, 24-31.	0.6	12
62	Molecular Weight Development during Simultaneous Chain Scission, Long-Chain Branching and Crosslinking, 2. Macromolecular Theory and Simulations, 2003, 12, 32-41.	0.6	23
63	Distribution of molecular weight and composition in diblock copolymers. E-Polymers, 2003, 3, .	1.3	0
64	Simulation of size exclusion chromatography for branched polymers formed by simultaneous long-chain branching and random scission. E-Polymers, 2002, 2, .	1.3	5
65	Bimodal molecular weight distribution formed in the emulsion polymerization of ethylene. Journal of Polymer Science Part A, 2002, 40, 3426-3433.	2.5	12
66	Dimensions of branched polymers formed in simultaneous long-chain branching and random scission. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2960-2968.	2.4	34
67	Simultaneous long-chain branching and random scission: I. Monte Carlo simulation. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 391-403.	2.4	78
68	Simultaneous long-chain branching and random scission. II. Analytic expression for the weight-average molecular weights. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 404-414.	2.4	14
69	Molecular Weight Development in Free-Radical Polymerization with Polyfunctional Chain-Transfer Agents, 1. Equal Reactivity Model. Macromolecular Theory and Simulations, 2001, 10, 573-580.	0.6	4
70	Monte Carlo simulation of size exclusion chromatography for branched polymers formed through free-radical polymerization with chain transfer to polymer. Macromolecular Theory and Simulations, 2000, 9, 453-462.	0.6	26
71	Monte Carlo simulation of size exclusion chromatography for randomly branched and crosslinked polymers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2009-2018.	2.4	27
72	Postgel properties in the statistical crosslinking of heterochains. I. Systems withN types of chains. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2333-2341.	2.4	3

#	Article	IF	CITATIONS
73	Postgel properties in the statistical crosslinking of heterochains. II. Free-radical crosslinking copolymerization. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2342-2350.	2.4	4
74	Molecular weight distribution formed during free-radical polymerization in the presence of polyfunctional chain transfer agents. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1267-1275.	2.4	4
75	Comb-Branched Polymer Formation During Copolymerization with Macromonomer. Polymer-Plastics Technology and Engineering, 1999, 7, 577-605.	0.7	3
76	Markovian approach to nonlinear polymer formation: Free-radical polymerization with chain transfer to polymer. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 357-371.	2.4	12
77	Structural requirements for gel formation. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2015-2018.	2.4	20
78	General matrix formula for the weight-average molecular weights of crosslinked polymer systems. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2423-2433.	2.4	13
79	Molecular weight distribution formed through chain-length-dependent crosslinking reactions. Macromolecular Theory and Simulations, 1998, 7, 225-232.	0.6	23
80	Markovian approach to nonlinear polymer formation: Free-radical crosslinking copolymerization. Macromolecular Theory and Simulations, 1998, 7, 675-684.	0.6	16
81	Copolymerization with Chain Transfer Monomer. 2. Molecular Weight Distribution. Macromolecules, 1997, 30, 1693-1700.	2.2	19
82	Production of Homogeneously Branched Polymers by Using a Chain-Transfer Monomer. Industrial & Engineering Chemistry Research, 1997, 36, 1181-1190.	1.8	3
83	Copolymerization with Chain Transfer Monomer. 1. Distribution of Branch Points. Macromolecules, 1997, 30, 1685-1692.	2.2	11
84	Statistical branching of heterochains. Macromolecular Theory and Simulations, 1997, 6, 451-465.	0.6	6
85	Statistical derivation of kinetic molecular weight development equations in nonlinear free-radical polymerization. Macromolecular Theory and Simulations, 1997, 6, 641-654.	0.6	3
86	Molecular weight distribution in nonlinear emulsion polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1515-1532.	2.4	17
87	Random Degradation of Branched Polymers. 1. Star Polymers. Macromolecules, 1996, 29, 3000-3009.	2.2	37
88	Random Degradation of Branched Polymers. 2. Multiple Branches. Macromolecules, 1996, 29, 3010-3021.	2.2	43
89	Kinetics of Free-Radical Polymerization with Chain-Length-Dependent Bimolecular Termination under Unstationary Conditions. Macromolecules, 1996, 29, 3073-3080.	2.2	15
90	Random Sampling Technique To Predict the Molecular Weight Distribution in Free-Radical Polymerization That Involves Polyfunctional Chain Transfer Agents. Macromolecules, 1996, 29, 693-704.	2.2	28

#	Article	IF	CITATIONS
91	Random sampling technique to predict the molecular weight distribution in nonlinear polymerization. Macromolecular Theory and Simulations, 1996, 5, 1167-1194.	0.6	39
92	Molecular weight distribution in random branching of polymer chains. Macromolecular Theory and Simulations, 1996, 5, 129-144.	0.6	67
93	Branched structure formation in free radical polymerization of vinyl acetate. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 671-681.	2.4	27
94	Microgel formation in emulsion copolymerization. I. Polymerization without seed latex. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1403-1413.	2.4	12
95	Microgel formation in emulsion copolymerization: 2. Seeded polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 1415-1422.	2.4	9
96	Polyradical distribution in free radical crosslinking of polymer chains. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2099-2104.	2.4	18
97	Simulation model for the molecular weight distribution in emulsion polymerization. Journal of Polymer Science Part A, 1995, 33, 441-453.	2.5	26
98	Long-chain branching in free-radical polymerization due to chain transfer to polymer. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 841-853.	2.4	40
99	Molecular weight distribution in random crosslinking of polymer chains. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1191-1202.	2.4	32
100	Kinetics of long-chain branching in emulsion polymerization: 1. Chain transfer to polymer. Polymer, 1994, 35, 3023-3031.	1.8	34
101	A simulation model for long-chain branching in vinyl acetate polymerization: 1. Batch polymerization. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 901-910.	2.4	34
102	A simulation model for long-chain branching in vinyl acetate polymerization: 2. Continuous polymerization in a stirred tank reactor. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 911-919.	2.4	35
103	Molecular weight distribution in random crosslinking of polymers: Modality of the molecular weight distribution. Macromolecular Theory and Simulations, 1994, 3, 1033-1049.	0.6	23
104	Network Formation in Emulsion Crosslinking Copolymerization. Macromolecules, 1994, 27, 3389-3396.	2.2	55
105	Molecular Weight Distribution in Emulsion Polymerization. Macromolecules, 1994, 27, 3804-3811.	2.2	62
106	Simulation model for network formation in free-radical crosslinking copolymerization: Pregelation period. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 761-776.	1.0	30
107	Molecular weight distribution in free radical polymerization with long-chain branching. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1363-1371.	2.4	87
108	Crosslinking kinetics in emulsion polymerization. Polymer International, 1993, 30, 177-183.	1.6	8

ΗΙΔΕΤΑΚΑ ΤΟΒΙΤΑ

#	Article	IF	CITATIONS
109	Control of network structure in emulsion crosslinking copolymerization. Polymer International, 1993, 30, 195-201.	1.6	6
110	Kinetics of network formation in free-radical crosslinking copolymerization. Macromolecules, 1993, 26, 5427-5435.	2.2	41
111	Molecular weight distribution in free-radical crosslinking copolymerization. Macromolecules, 1993, 26, 836-841.	2.2	100
112	R&D Note: On the Calculation of Molecular Weight Distribution from the Moments Using Laguerre Polynomials. Polymer-Plastics Technology and Engineering, 1993, 1, 407-425.	0.7	23
113	Kinetics of Long-Chain Branching via Chain Transfer to Polymer: I. Branched Structure. Polymer-Plastics Technology and Engineering, 1993, 1, 357-378.	0.7	33
114	Crosslinking kinetics in emulsion copolymerization. Macromolecules, 1992, 25, 2671-2678.	2.2	57
115	Kinetics of free-radical copolymerization: the pseudo-kinetic rate constant method. Polymer, 1991, 32, 2641-2647.	1.8	81
116	Controllable Powerâ€Law Distribution in Freeâ€Radical Vinyl/Divinyl Copolymerization by Using a	0.6	2

¹¹⁶ Continuous Stirred Tank Reactor. Macromolecular Theory and Simulations, 0, , 2100030.