Tao Zu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9841414/publications.pdf

Version: 2024-02-01

516710 752698 3,352 21 16 20 citations h-index g-index papers 23 23 23 3627 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The alternative initiation factor eIF2A plays key role in RAN translation of myotonic dystrophy type 2 CCUG•CAGG repeats. Human Molecular Genetics, 2021, 30, 1020-1029.	2.9	17
2	CCG•CGG interruptions in highâ€penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Molecular Medicine, 2021, 13, e14095.	6.9	12
3	Repeat length increases disease penetrance and severity in <i>C9orf72</i> ALS/FTD BAC transgenic mice. Human Molecular Genetics, 2021, 29, 3900-3918.	2.9	7
4	Antibody Therapy Targeting RAN Proteins Rescues C9 ALS/FTD Phenotypes in C9orf72 Mouse Model. Neuron, 2020, 105, 645-662.e11.	8.1	70
5	Survival and Motor Phenotypes in FVB C9-500 ALS/FTD BAC Transgenic Mice Reproduced by Multiple Labs. Neuron, 2020, 108, 784-796.e3.	8.1	22
6	Metformin inhibits RAN translation through PKR pathway and mitigates disease in <i>C9orf72</i> ALS/FTD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18591-18599.	7.1	79
7	<scp>SCA</scp> 8 <scp>RAN</scp> polySer protein preferentially accumulates in white matter regions and is regulated by <scp>eIF</scp> 3F. EMBO Journal, 2018, 37, .	7.8	50
8	Repeat-Associated Non-ATG Translation in Neurological Diseases. Cold Spring Harbor Perspectives in Biology, 2018, 10, a033019.	5 . 5	33
9	RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron, 2017, 95, 1292-1305.e5.	8.1	116
10	C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD. Neuron, 2016, 90, 521-534.	8.1	294
11	A1â€New starts and directions: understanding the role of hidden expansion proteins in HD. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A1.1-A1.	1.9	O
12	RAN Translation in Huntington Disease. Neuron, 2015, 88, 667-677.	8.1	275
13	Mutant Â-III Spectrin Causes mGluR1Â Mislocalization and Functional Deficits in a Mouse Model of Spinocerebellar Ataxia Type 5. Journal of Neuroscience, 2014, 34, 9891-9904.	3.6	65
14	Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion. Neurobiology of Aging, 2014, 35, 2419.e17-2419.e21.	3.1	21
15	RAN proteins and RNA foci from antisense transcripts in <i>C9ORF72</i> ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4968-77.	7.1	681
16	Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 260-265.	7.1	826
17	The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1291-1296.	7.1	85
18	Antisense RNA Sequences Modulating the Ataxin-1 Message: Molecular Model of Gene Therapy for Spinocerebellar Ataxia Type 1, a Dominant-Acting Unstable Trinucleotide Repeat Disease. Cell Transplantation, 2008, 17, 723-734.	2.5	7

#	Article	IF	CITATIONS
19	RORα-Mediated Purkinje Cell Development Determines Disease Severity in Adult SCA1 Mice. Cell, 2006, 127, 697-708.	28.9	210
20	Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics, 2006, 38, 758-769.	21.4	408
21	Targeted Deletion of a Single Sca8 Ataxia Locus Allele in Mice Causes Abnormal Gait, Progressive Loss of Motor Coordination, and Purkinje Cell Dendritic Deficits. Journal of Neuroscience, 2006, 26, 9975-9982.	3.6	70