Olga Boyarchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9840475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Magnetic Fields Assisted for Preparation of Ferromagnetic Mono- and Bi-Metallic Co and Co–V SHS Catalysts on Their Activity in Deep Oxidation and Hydrogenation of CO2. Metals, 2022, 12, 166.	2.3	0
2	Peculiarities of Structure Formation in Ni–C, Al–C, and Ni–Al–C Systems at High-Temperature Heating. Inorganic Materials: Applied Research, 2022, 13, 1-6.	0.5	0
3	High-Temperature Interaction of Carbon Fibers with a Nickel Melt. Russian Journal of Physical Chemistry B, 2022, 16, 167-174.	1.3	2
4	FEATURES OF STRUCTURE FORMATION IN NI-C, AL-C AND NI-AL-C SYSTEMS UNDER HIGH-TEMPERATURE HEATING. Materialovedenie, 2021, 21, 3-8.	0.1	0
5	SHS in Ternary Ni–Al–Ti System. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 94-99.	0.5	1
6	Interaction of Carbon Fiber with a Ti–Al Melt during Self-Propagating High-Temperature Synthesis. Inorganic Materials, 2021, 57, 683-686.	0.8	0
7	Preparation of Dense TiB2 by Forced Self-Propagating High-Temperature Synthesis Compaction with Mechanical Activation of Reagents. Inorganic Materials, 2021, 57, 1061-1066.	0.8	2
8	Self-Propagating High-Temperature Synthesis in the Ti–Al–Si System. Inorganic Materials, 2021, 57, 1201-1207.	0.8	4
9	High-Temperature Synthesis of Cr–Mo–Al–C Materials. Inorganic Materials, 2021, 57, 1300-1306.	0.8	2
10	Burning Velocity of Double-Layer Ti + 2B Strips: Influence of Clearance Space. International Journal of Self-Propagating High-Temperature Synthesis, 2018, 27, 103-106.	0.5	2
11	Ni3ÐI/C Composites by Thermal Explosion. International Journal of Self-Propagating High-Temperature Synthesis, 2018, 27, 64-65.	0.5	5
12	Structure and properties of a composite material obtained by thermal explosion in a mixture of Ni + Al + Cr2O3. Combustion, Explosion and Shock Waves, 2017, 53, 41-48.	0.8	5
13	SHS joining by thermal explosion in (Ni + Al)/Nb/(Ni + Al + Nb) sandwiches: Microstructure of transition zone. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 49-53.	0.5	7
14	Formation of the structure and phase composition of the Ti–Al–Ta-based materials. Russian Journal of Non-Ferrous Metals, 2016, 57, 489-496.	0.6	2
15	Combustion of layered SHS systems: Thermal conditions at the interface. International Journal of Self-Propagating High-Temperature Synthesis, 2015, 24, 115-118.	0.5	7
16	NiAl intermetallics dispersion-strengthened with silica, alumina, and mullite: Synthesis and characterization. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23, 83-88.	0.5	5
17	SHS welding by thermal explosion: Ti-Ti and Ti-NiAl joints. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 99-102.	0.5	8
18	Deposition of Ni-Al coatings onto copper by mechanical/heat treatment. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 103-109.	0.5	3

Olga Boyarchenko

#	Article	IF	CITATIONS
19	SHS joining in the Ti-Si-C system: Structure of transition layer. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 46-51.	0.5	10
20	Load-assisted SHS joining of NiAl to Ni. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 52-55.	0.5	2
21	Thermal explosion in various Ni-Al Systems: Effect of mechanical activation. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 60-64.	0.5	26
22	Reactivity of mechanically activated powder blends: Role of micro and nano structures. International Journal of Self-Propagating High-Temperature Synthesis, 2013, 22, 210-216.	0.5	31
23	SHS in microgravity: Analysis of combustion products formed in the Ti-Al-C system. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 224-230.	0.5	0
24	SHS of graded Ti-Al-C ceramics: Composition of transition layers. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 231-235.	0.5	3
25	Peculiar features of interaction of intermetallic compounds based on Ti-Al, Ni-Al with Ti and Ni metallic substrates in the mode of self-propagating high-temperature synthesis. Inorganic Materials: Applied Research, 2012, 3, 376-380.	0.5	2
26	Production, electrical conductivity, and gas-sensing properties of thin nickel ferrite films. Doklady Physical Chemistry, 2012, 444, 83-87.	0.9	2
27	SHS-based fabrication of inorganic materials with desired structure and porosity. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 20-26.	0.5	2
28	SHS joining of intermetallics with metallic substrates. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 185-190.	0.5	5
29	Synthesis of Ti-Al-based materials by thermal explosion. International Journal of Self-Propagating High-Temperature Synthesis, 2010, 19, 285-291.	0.5	10