Surawee Chuaiphichai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9839979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation. Cell Reports, 2019, 28, 218-230.e7.	6.4	149
2	Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 2015, 79, 206-216.	2.9	115
3	Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron, 2015, 86, 1393-1406.	8.1	101
4	Fat-Secreted Ceramides Regulate Vascular Redox State and Influence Outcomes in Patients With Cardiovascular Disease. Journal of the American College of Cardiology, 2021, 77, 2494-2513.	2.8	59
5	Effects of canagliflozin on human myocardial redox signalling: clinical implications. European Heart Journal, 2021, 42, 4947-4960.	2.2	57
6	Adipose tissue–derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Science Translational Medicine, 2019, 11, .	12.4	54
7	Cell-Autonomous Role of Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation. Hypertension, 2014, 64, 530-540.	2.7	50
8	Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovascular Research, 2018, 114, 1385-1399.	3.8	38
9	A key role for tetrahydrobiopterinâ€dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterinâ€deficient mice. British Journal of Pharmacology, 2017, 174, 657-671.	5.4	37
10	lsolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide - Biology and Chemistry, 2020, 100-101, 17-29.	2.7	37
11	A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovascular Research, 2020, 116, 1863-1874.	3.8	23
12	Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) Il–Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm. Hypertension, 2018, 72, 128-138.	2.7	22
13	Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vascular Pharmacology, 2016, 77, 69-79.	2.1	19
14	Insulin-induced vascular redox dysregulation in human atherosclerosis is ameliorated by dipeptidyl peptidase 4 inhibition. Science Translational Medicine, 2020, 12, .	12.4	15
15	Vascular wall regulator of G-protein signalling-1 (RGS-1) is required for angiotensin Il–mediated blood pressure control. Vascular Pharmacology, 2018, 108, 15-22.	2.1	13
16	BH4 Increases nNOS Activity and Preserves Left Ventricular Function in Diabetes. Circulation Research, 2021, 128, 585-601.	4.5	13
17	Endothelial GTPCH (GTP Cyclohydrolase 1) and Tetrahydrobiopterin Regulate Gestational Blood Pressure, Uteroplacental Remodeling, and Fetal Growth. Hypertension, 2021, 78, 1871-1884.	2.7	10
18	Crucial Role for Neuronal Nitric Oxide Synthase in Early Microcirculatory Derangement and Recipient Survival following Murine Pancreas Transplantation. PLoS ONE, 2014, 9, e112570.	2.5	6

#	Article	IF	CITATIONS
19	<i>PHACTR1</i> modulates vascular compliance but not endothelial function: a translational study. Cardiovascular Research, 2023, 119, 599-610.	3.8	4
20	Abstract 167: A Cell-Autonomous Role for Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0