
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983968/publications.pdf Version: 2024-02-01

ΔΝΟΡΑΩς Ε ΩΟΤΕΙΟ

#	Article	IF	CITATIONS
1	Drastic microstructural modification of Bi2Ca2Co2O ceramics by Na doping and laser texturing. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 634-640.	1.9	1
2	U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan. Energy, 2022, 238, 121771.	8.8	7
3	Low temperature thermoelectric properties of Na-substituted Bi2Ca2Co2Oy ceramics fabricated via LFZ technique. Materials Chemistry and Physics, 2022, 278, 125673.	4.0	Ο
4	Enhanced Superconducting Properties in Bi2Sr2Ca1Cu1.75Na0.25Oy Ceramics Prepared by Hot-Pressing Under Different Pressures and Temperatures. Journal of Superconductivity and Novel Magnetism, 2022, 35, 1831-1838.	1.8	4
5	Role of Y substitution for Ca-site on magneto-resistivity properties of Bi-2212 superconductor rods prepared by LFZ. Materials Chemistry and Physics, 2022, 282, 125995.	4.0	0
6	Influence of ceramic particles additions on the properties of Ca3Co4O9. SN Applied Sciences, 2022, 4, 1.	2.9	2
7	Assessment of the laser floating zone processing of thermoelectric CuFe1–xNixO2 delafossites and their magnetic characterisation. Journal of Alloys and Compounds, 2022, , 165678.	5.5	1
8	Impact of silver addition on the superconducting performances of Bi2Sr2Ca0.925Na0.075Cu2Oy:Ag composite fibers. Journal of the European Ceramic Society, 2022, , .	5.7	0
9	Enhanced thermoelectric properties in Bi2Sr2-XBaxCo2Oy ceramics by Ba doping. Physica B: Condensed Matter, 2022, 643, 414138.	2.7	1
10	Tuning Ca3Co4O9 thermal and transport properties by TiC nanoparticles addition. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 138-146.	1.9	2
11	Drastic enhancement of mechanical properties of Ca3Co4O9 by B4C addition. Journal of the European Ceramic Society, 2021, 41, 402-408.	5.7	9
12	Exploring the High-Temperature Electrical Performance of Ca3â^'xLaxCo4O9 Thermoelectric Ceramics for Moderate and Low Substitution Levels. Symmetry, 2021, 13, 782.	2.2	2
13	Significant enhancement of superconducting performances of Bi-2212 fibers through combined sodium substitution and LFZ process. Journal of Materials Science: Materials in Electronics, 2021, 32, 17686-17699.	2.2	3
14	Tuning thermoelectric properties of Bi2Ca2Co2Oy through K doping and laser floating zone processing. Solid State Sciences, 2021, 120, 106732.	3.2	2
15	Detail investigation of thermoelectric performance and magnetic properties of Cs-doped Bi2Sr2Co2Oy ceramic materials. SN Applied Sciences, 2021, 3, 1.	2.9	4
16	Evaluation of pressure and temperature effect on the structure and properties of Ca2.93Sr0.07Co4O9 ceramic materials. Ceramics International, 2021, 48, 7730-7730.	4.8	3
17	Effect of annealing and potassium substitution on the thermoelectric and magnetic properties of directionally grown Bi2Sr2Co2O ceramics. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 121-128.	1.9	3
18	Enhancement of electrical conductivity of Ca 2.93 Sr 0.07 Co 4 O 9 thick films via hot uniaxial pressing. International Journal of Applied Ceramic Technology, 2020, 17, 1322-1327.	2.1	5

#	Article	IF	CITATIONS
19	Effect of Rubidium Substitution on the Physical and Superconducting Properties of Textured High-Tc BSCCO Samples. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1285-1292.	1.8	6
20	A study on thermoelectric performance and magnetic properties of Ti-doped Bi2Sr2Co1.8Oy ceramic materials. Materials Chemistry and Physics, 2020, 256, 123701.	4.0	3
21	Tuning thermoelectric properties of Ca0.9Gd0.1MnO3 by laser processing. Journal of Materials Science: Materials in Electronics, 2020, 31, 18913-18922.	2.2	4
22	Increase of electric performances in Bi2Sr2-xRbxCo2O8+ĺ laser grown ceramics induced by annealing. Solid State Sciences, 2020, 108, 106435.	3.2	1
23	Drastic modification of low temperature thermoelectric properties of Na-doped Bi2Sr2Co2Oy ceramics prepared via laser floating zone technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 15558-15564.	2.2	2
24	Reduction in Processing Time in Ca3Co4O9+l̂´ Ceramics through Nanoprecursors Produced by an Easily Scalable and Environmentally Friendly Process. Nanomaterials, 2020, 10, 2533.	4.1	1
25	Improvement of grain alignment in Bi2Sr2Co1.8Oy thermoelectric through the electrically assisted laser floating zone. Materials Research Bulletin, 2020, 130, 110933.	5.2	3
26	Thermoelectric modules built using ceramic legs grown by laser floating zone. Ceramics International, 2020, 46, 24318-24325.	4.8	4
27	A novel multilayer composite structured thermoelectric module with high output power. Journal of Materials Chemistry A, 2020, 8, 3379-3389.	10.3	10
28	Processing of Superconducting and Thermoelectric Bulk Materials Via Laser Technologies. NATO Science for Peace and Security Series C: Environmental Security, 2020, , 297-312.	0.2	0
29	Effect of alkaline earth dopant on density, mechanical, and electrical properties of Cu0.97AE0.03CrO2 (AE = Mg, Ca, Sr, and Ba) delafossite oxide. Journal of the Australian Ceramic Society, 2019, 55, 257-263.	1.9	11
30	Effect of sintering temperature on dosimetric properties of BeO ceramic pellets synthesized using precipitation method. Nuclear Instruments & Methods in Physics Research B, 2019, 441, 46-55.	1.4	23
31	Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics. Journal of the European Ceramic Society, 2019, 39, 4184-4188.	5.7	37
32	Effect of Cesium Substitution on the Superconducting Properties of Bi-2212 Samples Prepared Via Solid-State Reaction and Laser Floating Zone Technique. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3439-3448.	1.8	4
33	Low temperature thermoelectric properties of K-substituted Bi2Sr2Co2Oy ceramics prepared via laser floating zone technique. Journal of the European Ceramic Society, 2019, 39, 3082-3087.	5.7	12
34	Improving thermoelectric properties of Ca3Co4O9+δ through both Na doping and K addition at optimal values. Journal of Materials Science: Materials in Electronics, 2019, 30, 8832-8837.	2.2	2
35	Effect of Carbon Nanotube Addition on the Superconducting Properties of BSCCO Samples Textured via Laser Floating Zone Technique. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3135-3141.	1.8	5
36	Î Unileg Thermoelectric Structure for Cycling Robustness at High Temperature and Low Manufacturing Cost. Journal of Electronic Materials, 2019, 48, 2010-2017.	2.2	3

#	Article	IF	CITATIONS
37	Significant enhancement of the thermoelectric performance in Ca3Co4O9 thermoelectric materials through combined strontium substitution and hot-pressing process. Journal of the European Ceramic Society, 2019, 39, 1186-1192.	5.7	46
38	High-Temperature Stability of Hot-Pressed Sr-Doped Ca3Co4O9. Journal of Electronic Materials, 2019, 48, 1965-1970.	2.2	4
39	Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions. Journal of Materials Science, 2019, 54, 3252-3261.	3.7	4
40	Fast preparation route to high-performances textured Sr-doped Ca3Co4O9 thermoelectric materials through precursor powder modification. Science China Materials, 2019, 62, 399-406.	6.3	19
41	Effect of substrate on the microstructure and thermoelectric performances of Sr-doped Ca3Co4O9 thick films. Ceramics International, 2019, 45, 5431-5435.	4.8	6
42	In-situ infrared thermography measurements to master transmission laser welding process parameters of PEKK. Optics and Lasers in Engineering, 2018, 106, 94-104.	3.8	18
43	Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics. Ceramics International, 2018, 44, 12697-12701.	4.8	21
44	Superconducting stacks. Materials Today, 2018, 21, 98-99.	14.2	1
45	High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 1-8.	1.9	2
46	Improvement of Bi2Sr2Co2Oy thermoelectric performances by Na doping. Journal of Electroceramics, 2018, 40, 11-15.	2.0	21
47	Effect of Na-doping on thermoelectric and magnetic performances of textured Bi2Sr2Co2Oy ceramics. Journal of the European Ceramic Society, 2018, 38, 515-520.	5.7	15
48	Improving bulk Ca ₃ Co ₄ O ₉ thermoelectric materials through Zr doping. Advances in Applied Ceramics, 2018, 117, 142-146.	1.1	7
49	New environmentally friendly Ba-Fe-O thermoelectric material by flexible laser floating zone processing. Scripta Materialia, 2018, 145, 54-57.	5.2	7
50	Influence of Ag on the Properties of Ca0.9Yb0.1MnO3 Sintered Ceramics. Materials, 2018, 11, 2503.	2.9	5
51	Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process. Journal of Materials Science: Materials in Electronics, 2018, 29, 19147-19154.	2.2	5
52	Right Heterogeneous Microstructure for Achieving Excellent Thermoelectric Performance in Ca _{0.9} R _{0.1} MnO _{3â~δ} (R = Dy, Yb) Ceramics. Inorganic Chemistry, 2018, 57, 9133-9141.	4.0	13
53	Effect of Na substitution and Ag addition on the superconducting properties of Bi-2212 textured materials. Journal of Materials Science: Materials in Electronics, 2017, 28, 6278-6283.	2.2	7
54	From nanosized precursors to high performance ceramics: The case of Bi2Ca2Co1.7Ox. Materials Letters, 2017, 191, 14-16.	2.6	10

#	Article	IF	CITATIONS
55	Preparation of high performance Bi ₂ Sr ₂ Co _{1.8} O _x thermoelectric materials from nanosized precursors. Advances in Applied Ceramics, 2017, 116, 383-391.	1.1	5
56	Effects of K substitution on thermoelectric and magnetic properties of Bi2Sr2Co2Oy ceramic. Journal of Materials Science: Materials in Electronics, 2017, 28, 12652-12659.	2.2	8
57	Effect of precursors on the microstructure and electrical properties of Bi2Ba2Co2O x. Journal of the Australian Ceramic Society, 2017, 53, 583-590.	1.9	5
58	Effect of synthesis process on the densification, microstructure, and electrical properties of Ca _{0.9} Yb _{0.1} MnO ₃ ceramics. International Journal of Applied Ceramic Technology, 2017, 14, 1190-1196.	2.1	19
59	General approach of the photothermoelectric technique for thermal characterization of solid thermoelectric materials. Journal Physics D: Applied Physics, 2017, 50, 265501.	2.8	1
60	Enhanced electrical and thermoelectric properties from textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites. Journal of Materials Science, 2017, 52, 4833-4839.	3.7	4
61	High mechanical and thermoelectric performances in hot-pressed CdO. Journal of Materials Science: Materials in Electronics, 2017, 28, 5518-5522.	2.2	2
62	Physical, electrical and magnetic properties of Cr doped Bi2Sr2Ca1Cu2â^'xCrxOy (Bi-2212) superconductors prepared by laser floating zone technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 13120-13125.	2.2	0
63	Effect of Na substitution on superconducting properties of Bi-2212 ceramics prepared by Sinter-Forged process. Journal of the European Ceramic Society, 2017, 37, 1007-1012.	5.7	24
64	Long-Term High-Temperature Stability of Directionally Grown [Bi2Ba2O4]p[CoO2] Rods. Materials, 2017, 10, 146.	2.9	2
65	Thermal Conductivity and Thermoelectric Power of Yb-Substituted Bi-2212 Superconductor. Journal of Physics: Conference Series, 2016, 667, 012001.	0.4	1
66	Laser transmission welding as an assembling process for high temperature electronic packaging. , 2016, , .		2
67	Thermoelectric properties of directionally grown Bi2Ba2Co2OÎ′/Ag composites: effect of annealing. Journal of Materials Science: Materials in Electronics, 2016, 27, 12964-12973.	2.2	6
68	Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. Journal of the European Ceramic Society, 2016, 36, 1025-1032.	5.7	38
69	Improvement of structural and superconducting properties of Bi-2212 textured rods by substituting sodium. Ceramics International, 2016, 42, 8473-8477.	4.8	16
70	Improved thermoelectric performances in textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites. Ceramics International, 2016, 42, 18592-18596.	4.8	4
71	Thermoelectrics. Materials Today, 2016, 19, 415-416.	14.2	4
72	In-situ measurements of temperature distribution during transmission laser welding of poly(aryletherketone). AIP Conference Proceedings, 2016, , .	0.4	0

#	Article	IF	CITATIONS
73	Enhancement of magnetic relaxation behavior by texturing in Bi-2212 superconducting rods. Ceramics International, 2016, 42, 8325-8330.	4.8	2
74	Effect of Yttrium substitution on superconductivity in Bi-2212 textured rods prepared by a LFZ technique. Ceramics International, 2016, 42, 3418-3423.	4.8	18
75	Role of Ag in textured-annealed Bi2Ca2Co1.7Ox thermoelectric ceramic. Acta Materialia, 2016, 102, 273-283.	7.9	22
76	High thermoelectric performance in Bi2-xPbxBa2Co2Oy promoted by directional growth and annealing. Journal of the European Ceramic Society, 2016, 36, 67-74.	5.7	26
77	Thermoelectric doping effect in Ca3Co4-xNixO9 ceramics. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 21-27.	1.9	8
78	Effect of Secondary Annealing Process on Critical Current Density in Highly Textured Bi-2212 Superconducting System. Jom, 2015, 67, 2079-2086.	1.9	2
79	Thermal Conductivity and Thermoelectric Power of Potassium and Sodium-Substituted Bi-2212 Superconductor Prepared by PEI Technique. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2641-2647.	1.8	0
80	Very Large Superconducting Currents Induced by Growth Tailoring. Crystal Growth and Design, 2015, 15, 2094-2101.	3.0	52
81	The effect of environmental conditions on the mechanical and thermoelectric properties of Bi2Ca2Co1.7Ox textured rods. Ceramics International, 2015, 41, 6358-6363.	4.8	5
82	Decrease of Ca3Co4O9+δ thermal conductivity by Yb-doping. Ceramics International, 2015, 41, 12529-12534.	4.8	9
83	Thermoelectric properties in Ca ₃ Co _{4â^x} Mn _x O _y ceramics. Advances in Applied Ceramics, 2015, 114, 303-308.	1.1	6
84	Decrease of electrical resistivity in Ca3Co4O9 thermoelectric ceramics by Ti doping. Journal of Materials Science: Materials in Electronics, 2015, 26, 815-820.	2.2	7
85	Improvement of superconducting properties in Na-doped BSCCO superconductor. Journal of Materials Science: Materials in Electronics, 2015, 26, 441-447.	2.2	33
86	Sintering Effects in Na-Substituted Bi-(2212) Superconductor Prepared by a Polymer Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1913-1924.	1.8	15
87	High Thermoelectric Performances in Co-oxides Processed by a Laser Floating Zone Technique. Materials Today: Proceedings, 2015, 2, 654-660.	1.8	4
88	Enhancement of mechanical and thermoelectric properties of Ca3Co4O9 by Ag addition. Journal of the European Ceramic Society, 2015, 35, 3835-3841.	5.7	48
89	Use of laser technology to produce high thermoelectric performances in Bi2Sr2Co1.8Ox. Materials & Design, 2015, 75, 143-148.	5.1	29
90	Mechanical and thermoelectric environmental evolution properties of Bi2Sr2Co1.8Ox ceramics textured by laser floating zone technique. Journal of Materials Science: Materials in Electronics, 2015, 26, 1461-1465.	2.2	2

ANDRéS E SOTELO

#	Article	IF	CITATIONS
91	Improvement of the intergranular pinning energy in the Na-doped Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics, 2015, 26, 2830-2837.	2.2	13
92	Grain alignment and its relationship with superconductivity and thermal transport of Ni-substituted Bi-2212 textured rods fabricated at two different growth rates. Journal of Materials Science: Materials in Electronics, 2015, 26, 3090-3099.	2.2	2
93	Improvement of thermoelectric properties in Ca3Co4O9 ceramics by Ba doping. Journal of Materials Science: Materials in Electronics, 2015, 26, 3466-3473.	2.2	13
94	Textured Pb-Doped Bi-2212 Superconductors for Current Limiters. Journal of Superconductivity and Novel Magnetism, 2015, 28, 447-452.	1.8	9
95	The Effect of K Substitution on Magnetoresistivity and Activation Energy of Bi-2212 System. Journal of Superconductivity and Novel Magnetism, 2015, 28, 553-559.	1.8	7
96	Composite Bi-2212/Ag Superconductors Grown by Laser Travelling Floating Zone at Low Rates. Journal of Superconductivity and Novel Magnetism, 2015, 28, 415-418.	1.8	3
97	Growth Speed and Substitution Effects on Alignment and Thermal Transport Properties of Bi-2212 Textured Superconductors. Jom, 2015, 67, 222-232.	1.9	2
98	Effect of Na doping on the Ca3Co4O9 thermoelectric performance. Ceramics International, 2015, 41, 10897-10903.	4.8	22
99	Fabrication and evolution of nanoprecursors to produce Bi(Pb)-2212/Ag textured superconducting composites. Ceramics International, 2015, 41, 14276-14284.	4.8	12
100	Relationship between microstructure and superconducting properties in hot-pressed Bi-2212/Ag ceramic composites. Ceramics International, 2015, 41, 14924-14929.	4.8	13
101	Effect of Yb substitution in Bi-2212 ceramics prepared by laser floating zone technique. Journal of Materials Science: Materials in Electronics, 2015, 26, 5761-5766.	2.2	1
102	Effect of synthesis methods on the Ca3Co4O9 thermoelectric ceramic performances. Journal of Solid State Chemistry, 2015, 221, 247-254.	2.9	49
103	Development of a new thermoelectric Bi2Ca2Co1.7Ox+Ca3Co4O9 composite. Scripta Materialia, 2014, 80, 1-4.	5.2	14
104	Structural, Electrical, and Magnetic Properties of the Co-Substituted Bi-2212 System Textured by Laser Floating Zone Technique. Journal of Superconductivity and Novel Magnetism, 2014, 27, 53-59.	1.8	23
105	Effect of Ce Substitution on the Magnetoresistivity and Flux Pinning Energy of the Bi2Sr2Ca1â^'x Ce x Cu2O8+Î′ Superconductors. Journal of Low Temperature Physics, 2014, 174, 136-147.	1.4	24
106	Modification of thermoelectric properties in Ca3Co4Oy ceramics by Nd doping. Journal of Materials Science: Materials in Electronics, 2014, 25, 922-927.	2.2	4
107	Effect of Ga addition on Ca-deficient Ca3Co4Oy thermoelectric materials. Ceramics International, 2014, 40, 6255-6260.	4.8	18

Thermoelectric properties of rare earth doped Ca3-xRExCo4O9 (RE = Dy, Er, Gd, and Tb; $x\hat{a}\in \infty=\hat{a}\in \infty$ 0, 0.01, 0.03,) Ti ETQq0 $\hat{\rho}$ 0 rgBT /C

#	Article	IF	CITATIONS
109	Doping effect in Ca3Co4â^'xZnxOy ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4033-4038.	2.2	2
110	Effect of K substitution on Structural, Electrical and Magnetic Properties of Bi-2212 system. Journal of Materials Science: Materials in Electronics, 2014, 25, 4476-4482.	2.2	13
111	Effect of Pb doping on the electrical properties of textured Bi-2212 superconductors. Journal of the European Ceramic Society, 2014, 34, 2977-2982.	5.7	19
112	Processing effects on the thermoelectric properties of Bi ₂ Ca ₂ Co _{1.7} O _x ceramics. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 207-212.	1.9	2
113	Influence of Ca substitution by Mg on the Ca ₃ Co ₄ O ₉ performances. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 41-47.	1.9	6
114	The Influence of Postannealing on Structural and Superconducting Properties of Bi-2212 Ceramics. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3247-3252.	1.8	9
115	Relationship Between Annealing Time and Magnetic Properties in Bi-2212 Textured Composites. Journal of Superconductivity and Novel Magnetism, 2013, 26, 873-878.	1.8	30
116	Environmental Degradation Effect on the Properties of Bi-2212 Highly Textured Rods. Journal of Superconductivity and Novel Magnetism, 2013, 26, 895-900.	1.8	2
117	Effect of Current Polarity on BSCCO/Ag Ceramics Textured by Electrically Assisted Laser Floating Zone. Journal of Superconductivity and Novel Magnetism, 2013, 26, 943-946.	1.8	26
118	Microstructure and Transport Properties of Bi-2212 Prepared by CO2 Laser Line Scanning. Journal of Superconductivity and Novel Magnetism, 2013, 26, 947-952.	1.8	37
119	Effect of Postannealing Process on Bi2Sr2.1Ca0.9Cu2O8+δTextured Superconductors. Journal of Superconductivity and Novel Magnetism, 2013, 26, 985-990.	1.8	9
120	Relationship Between Growth Speed and Magnetic Properties in Bi-2212/Ag Textured Composites. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1093-1098.	1.8	17
121	Structural and Superconducting Properties of Magnetically Doped Bi-2212 Textured Rods Grown by Laser Floating Zone (LFZ) Technique. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1135-1141.	1.8	2
122	Effect of Fe Substitution for Cu on Microstructure and Magnetic Properties of Laser Floating Zone (LFZ) Grown Bi-2212 Rods. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1143-1149.	1.8	4
123	Effect of metallic Ag on the properties of Bi-2212 ceramic superconductors. Journal of Materials Science: Materials in Electronics, 2013, 24, 3344-3351.	2.2	11
124	Effect of Cu by Co substitution on Ca3Co4O9 thermoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2309-2314.	2.2	36
125	Effect of Yb-substitution on thermally activated flux creep in the Bi2Sr2Ca1Cu2â [~] 'xYbxOy superconductors. Journal of Materials Science: Materials in Electronics, 2013, 24, 2568-2575.	2.2	22
126	New promising Co-free thermoelectric ceramic based on Ba–Fe–oxide. Journal of Materials Science: Materials in Electronics, 2013, 24, 1832-1836.	2.2	2

#	Article	IF	CITATIONS
127	Effect of Ce substitution on structural and superconducting properties of Bi-2212 system. Journal of Materials Science: Materials in Electronics, 2013, 24, 1580-1586.	2.2	21
128	Structural, superconducting and mechanical properties of molybdenum substituted Bi1.8Sr2Ca1.1Cu2.1Oy. Journal of Materials Science: Materials in Electronics, 2013, 24, 1158-1167.	2.2	17
129	Ceramics, squared. Materials Today, 2013, 16, 151-152.	14.2	0
130	Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. Journal of Alloys and Compounds, 2013, 577, 511-515.	5.5	66
131	Physical, Mechanical and Magnetic Properties of the Yb-Substituted Bi2Sr2Ca1Cu2O y Textured Superconductor. Journal of Superconductivity and Novel Magnetism, 2013, 26, 111-115.	1.8	22
132	Improvement of textured Bi1.6Pb0.4Sr2Co1.8O thermoelectric performances by metallic Ag additions. Ceramics International, 2013, 39, 1597-1602.	4.8	43
133	Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. Journal of the European Ceramic Society, 2013, 33, 1747-1754.	5.7	73
134	Enhancement of Ca 3 Co 4 O 9 thermoelectric properties by Cr for Co substitution. Ceramics International, 2013, 39, 6051-6056.	4.8	67
135	Modification of physical and structural properties of Bi1.8Pb0.4Sr2Ca2.2Cu3Oy ceramics induced by annealing. Physica B: Condensed Matter, 2013, 426, 85-89.	2.7	12
136	Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics. Scripta Materialia, 2013, 68, 75-78.	5.2	45
137	Effect of Ag additions on the Bi _{1.6} Pb _{0.4} Sr ₂ Co _{1.8thermoelectric properties. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2013, 52, 93-97.}	gt; Ω <sul	o>x
138	Growth rate effect on microstructure and thermoelectric properties of melt grown Bi ₂ Ba ₂ Co ₂ O _x textured ceramics. Advances in Applied Ceramics, 2012, 111, 490-494.	1.1	36
139	Electrical Polarization Effect on Bi2Ca2Co1.7Ox thermoelectrics grown by laser floating zone. Microscopy and Microanalysis, 2012, 18, 93-94.	0.4	5
140	Effect of annealing on the thermoelectric properties of directionally grown Bi2Sr2Co1.8Ox ceramics. Ceramics International, 2012, 38, 5419-5424.	4.8	17
141	A thermoelectric by any other name…. Materials Today, 2012, 15, 415.	14.2	1
142	Effect of Ag addition on the mechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Ox textured ceramics. Journal of the European Ceramic Society, 2012, 32, 3745-3751.	5.7	42
143	Relationship Between Growth Speed, Microstructure, Mechanical and Electrical Properties in Bi-2212/Ag Textured Composites. Journal of Superconductivity and Novel Magnetism, 2012, 25, 799-804.	1.8	49
144	Improvement of thermoelectric performances of Bi2Sr2Co1.8Ox textured materials by Pb addition using a polymer solution method. Materials Letters, 2012, 76, 5-7.	2.6	14

#	Article	IF	CITATIONS
145	New method to improve the grain alignment and performance of thermoelectric ceramics. Materials Letters, 2012, 83, 144-147.	2.6	53
146	Improvement of thermoelectric properties of Ca3Co4O9 using soft chemistry synthetic methods. Journal of the European Ceramic Society, 2012, 32, 2415-2422.	5.7	66
147	Mejora de las propiedades termoeléctricas de Bi ₂ Sr ₂ Co _{1.8} O _x por métodos de sÃntesis en disolución. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2012, 51, 1-6.	1.9	12
148	Improved thermoelectric properties in directionally grown Bi2Sr2Co1.8Oy ceramics by Pb for Bi substitution. Materials Research Bulletin, 2011, 46, 2537-2542.	5.2	45
149	Precursor Influence on the Electrical Properties of Textured Bi-2212 Superconductors. Journal of Superconductivity and Novel Magnetism, 2011, 24, 19-25.	1.8	37
150	Solution-based synthesis routes to thermoelectric Bi2Ca2Co1.7Ox. Journal of the European Ceramic Society, 2011, 31, 1763-1769.	5.7	53
151	Improved Thermoelectric Properties of Bi-M-Co-O (MÂ=ÂSr, Ca) Misfit Compounds by Laser Directional Solidification. Journal of Electronic Materials, 2010, 39, 1601-1605.	2.2	37
152	New solution method to produce high performance thermoelectric ceramics: A case study of Bi-Sr-Co-O. Materials Letters, 2010, 64, 2566-2568.	2.6	38
153	Enhancement of the thermoelectric properties of directionally grown Bi–Ca–Co–O through Pb for Bi substitution. Journal of the European Ceramic Society, 2010, 30, 1815-1820.	5.7	39
154	Floating zone Ag doped (Bi _{1·6} Pb _{0·4})Sr ₂ CaCu ₂ O _{8+<i>î´</i>} textured rods. Advances in Applied Ceramics, 2009, 108, 285-289.	1.1	14
155	The influence of Pb and Ag doping on the <i>J</i> _c (<i>H</i> , <i>T</i>) dependence and the mechanical properties of Bi-2212 textured rods. Superconductor Science and Technology, 2009, 22, 034012.	3.5	52
156	Improvement of Bi2Sr2Co1.8Ox thermoelectric properties by laser floating zone texturing. Solid State Ionics, 2009, 180, 827-830.	2.7	45
157	Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods. Journal of Physics: Conference Series, 2009, 153, 012021.	0.4	2
158	Barras texturadas de (Bi _{1.6} Pb _{0.4})Sr ₂ CaCu ₂ O _{8+δ} dopadas con Ag. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2008, 47, 148-152.	1.9	38
159	Cerámicas termoeléctricas Bi ₂ Ca ₂ Co _{1.7} O _x texturadas mediante fusión zonal flotante inducida por láser. Boletin De La Sociedad Espanola De Ceramica Y Vidrio. 2008. 47. 225-228.	1.9	38
160	Fabrication and properties of textured Bi-based cobaltite thermoelectric rods by zone melting. Journal of the European Ceramic Society, 2007, 27, 3697-3700.	5.7	39
161	Stress corrosion cracking of Bi-2212 thin rods. Journal of the European Ceramic Society, 2007, 27, 3963-3966.	5.7	4
162	Properties variation of Bi-2212 directionally solidified induced by 0.4Pb substitution. Journal of the European Ceramic Society, 2007, 27, 3959-3962.	5.7	33

#	Article	IF	CITATIONS
163	Estudio del eutéctico Al ₂ O ₃ -ZrO ₂ (3%) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 1 1.9	10 Tf 50 747 Td 3
	Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 119-122.		
164	Laser technologies applied to the fabrication and characterization of bulk Bi-2212 superconducting materials for power applications. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2931-2937.	1.8	22
165	Variación de las curvas E-I en la transición normal superconductor de cerámicas texturadas BI-2212 por adición de PB. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2006, 45, 228-232.	1.9	29
166	Ag distribution in thick Bi-2212 floating zone textured rods. Journal of the European Ceramic Society, 2005, 25, 2947-2950.	5.7	60
167	Efecto de la adiciÃ ³ n de Ag en Bi-2212 texturado mediante laser. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2005, 44, 199-203.	1.9	46
168	Textured Bi–Sr–Ca–Cu–O rods processed by laser floating zone from solid state or melted precursors. Physica C: Superconductivity and Its Applications, 2004, 415, 163-171.	1.2	35
169	Microstructure and transport properties of YBCO zone melted samples processed in a microwave cavity and infra-red furnace. Physica C: Superconductivity and Its Applications, 1999, 315, 205-214.	1.2	35
170	Relationship among synthesis, microstructure and properties in sinter-forged Bi-2212 ceramics. Physica C: Superconductivity and Its Applications, 1999, 319, 197-208.	1.2	67
171	Rapid synthesis of the Bi-2212 phase by a polymer matrix method. Superconductor Science and Technology, 1997, 10, 717-720.	3.5	36
172	Synthesis of the Bi2Sr2CaCu2O8+l̂´ superconductor following a polymer matrix route. Journal of Materials Science, 1997, 32, 5679-5685.	3.7	20
173	Phase diagram studies in the system Ag-"Bi2Sr2CaCu2O8â€, Physica C: Superconductivity and Its Applications, 1997, 275, 47-51.	1.2	35
174	Synthesis of highly pure Bi-2223 ceramics using defined precursors. Physica C: Superconductivity and Its Applications, 1996, 272, 115-124.	1.2	31
175	Stoichiometry variation effect on the superconducting properties of polymer-processed (Bi1-xPbx)2Sr2Ca2Cu3O10 ceramics. Solid State Ionics, 1993, 63-65, 883-888.	2.7	16
176	Ag/(Bi, Pb)-Sr-Ca-Cu-O superconducting tape processing: Solid state chemistry aspects. Solid State Ionics, 1993, 63-65, 889-896.	2.7	5
177	Novel polymer solution synthesis of the 110 K superconducting phase in the bismuth system. Chemistry of Materials, 1993, 5, 851-856.	6.7	38
178	Microstructure of laser floating zone (LFZ) textured (Bi, Pb)î—,Srî—,Caî—,Cuî—,O superconductor composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 173, 201-204.	5.6	39
179	Solution-based synthesis routes to (Bi1â~'xPbx)2Sr2Ca2Cu3O10+δ. Journal of Materials Research, 1993, 8, 1268-1276.	2.6	31
180	(Bi,Pb)2Sr2Ca2Cu3O10+l̂´ superconductor composites: Ceramics vs. fibers. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2401-2402.	1.2	29

#	Article	IF	CITATIONS
181	Polymer solution processing of (Bi, Pb)î—,Srî—,Caî—,Cuî—,O. Physica C: Superconductivity and Its Applications, 1991, 185-189, 509-510.	1.2	34
182	Variation of mechanical and electrical performances of Bi2Ca2Co1.7Ox ceramics above working conditions. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0