
Geoffrey G Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests. Global Change Biology, 2022, 28, 2895-2909.	4.2	8
2	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
3	Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102, e03259.	1.5	20
4	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
5	Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
6	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
7	Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient. Ecology Letters, 2020, 23, 160-171.	3.0	11
8	Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species. Ecology and Evolution, 2020, 10, 8770-8792.	0.8	15
9	Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 2020, 477, 118496.	1.4	64
10	Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.	3.0	92
11	On promoting the use of lidar systems in forest ecosystem research. Forest Ecology and Management, 2019, 450, 117484.	1.4	111
12	Consequences of environmental heterogeneity for the photosynthetic light environment of a tropical forest. Agricultural and Forest Meteorology, 2019, 278, 107661.	1.9	13
13	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	1.8	45
14	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
15	Effects of hurricane disturbance on a tropical dry forest canopy in western Mexico. Forest Ecology and Management, 2018, 426, 39-52.	1.4	40
16	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
17	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
18	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330

GEOFFREY G PARKER

#	Article	lF	CITATIONS
19	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222
20	Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiology, 2017, 37, 1415-1425.	1.4	30
21	What is the Point? Evaluating the Structure, Color, and Semantic Traits of Computer Vision Point Clouds of Vegetation. Remote Sensing, 2017, 9, 355.	1.8	27
22	Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests: the European perspective. European Journal of Forest Research, 2016, 135, 981-996.	1.1	19
23	A general model of intraâ€annual tree growth using dendrometer bands. Ecology and Evolution, 2015, 5, 243-254.	0.8	39
24	The importance of spatial detail: Assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation. Remote Sensing of Environment, 2015, 168, 102-112.	4.6	59
25	Ground based LiDAR demonstrates the legacy of management history to canopy structure and composition across a fragmented temperate woodland. Forest Ecology and Management, 2015, 335, 255-260.	1.4	14
26	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
27	Isotopic characteristics of canopies in simulated leaf assemblages. Geochimica Et Cosmochimica Acta, 2014, 144, 82-95.	1.6	57
28	Scaleâ€dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 2013, 101, 1214-1224.	1.9	265
29	Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecology Letters, 2012, 15, 1406-1414.	3.0	180
30	Forest canopy studies as an emerging field of science. Annals of Forest Science, 2011, 68, 217.	0.8	34
31	Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3611-3615.	3.3	318
32	Reply to Foster et al.: Using a forest to measure trees: Determining which vital rates are responding to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E88-E89.	3.3	2
33	Hyperspectral-LIDAR system and data product integration for terrestrial applications. Proceedings of SPIE, 2009, , .	0.8	1
34	Comparisons between in Situ Anisotropic Reflectance Measurements and Simulations for Vegetation Canopies: Validation and Sensitivity Analysis. , 2008, , .		0
35	Foliar Bio-Physical and Spectral Properties Associated with Light Environment in a Mature Poplar Stand. , 2008, , .		0
36	Comparison of small and large footprint lidar systems in predicting forest structural characteristics. , 2006, , .		0

3

GEOFFREY G PARKER

#	Article	IF	CITATIONS
37	Seasonal balance and vertical pattern of photosynthetically active radiation within canopies of a tropical dry deciduous forest ecosystem in Mexico. Journal of Tropical Ecology, 2005, 21, 283-295.	0.5	23
38	Reflections in Bumpy Terrain: Implications of Canopy Surface Variations for the Radiation Balance of Vegetation. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 90-93.	1.4	25
39	The Nature of Forest Canopies. , 2004, , 3-23.		18
40	A portable LIDAR system for rapid determination of forest canopy structure. Journal of Applied Ecology, 2004, 41, 755-767.	1.9	171
41	Three-dimensional Structure of an Old-growth Pseudotsuga-Tsuga Canopy and Its Implications for Radiation Balance, Microclimate, and Gas Exchange. Ecosystems, 2004, 7, 440.	1.6	144
42	Age-Related Development of Canopy Structure and Its Ecological Functions. , 2004, , 102-117.		10
43	The canopy surface and stand development: assessing forest canopy structure and complexity with near-surface altimetry. Forest Ecology and Management, 2004, 189, 307-315.	1.4	124
44	A Portable Airborne Laser System for Forest Inventory. Photogrammetric Engineering and Remote Sensing, 2003, 69, 267-273.	0.3	66
45	Canopy light transmittance in Douglas-fir-western hemlock stands. Tree Physiology, 2002, 22, 147-157.	1.4	91
46	Lidar Remote Sensing for Ecosystem Studies. BioScience, 2002, 52, 19.	2.2	1,330
47	Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 2002, 11, 393-399.	2.7	393
48	Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests. Remote Sensing of Environment, 2001, 76, 283-297.	4.6	326
49	Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements. Remote Sensing of Environment, 2001, 76, 298-309.	4.6	94
50	Forest Canopy Stratification—Is It Useful?. American Naturalist, 2000, 155, 473-484.	1.0	108
51	Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 1999, 70, 339-361.	4.6	683
52	Surface Lidar Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, USA. Remote Sensing of Environment, 1999, 67, 83-98.	4.6	480
53	A Balloon for Microclimate Observations Within the Forest Canopy. Journal of Applied Ecology, 1996, 33, 173.	1.9	11
54	Creation of the canopy research network. Visual Computer, 1995, 11, 275-275.	2.5	0

GEOFFREY G PARKER

#	Article	IF	CITATIONS
55	Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Canadian Journal of Forest Research, 1994, 24, 1694-1703.	0.8	139
56	Decline of understory American chestnut (Castaneadentata) in a southern Appalachian forest. Canadian Journal of Forest Research, 1993, 23, 259-265.	0.8	26
57	The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages from the fossil record. Paleobiology, 1992, 18, 30-49.	1.3	149
58	Access to the Upper Forest Canopy with a Large Tower Crane. BioScience, 1992, 42, 664-670.	2.2	93
59	Vertical profile and canopy organization in a mixed deciduous forest. Plant Ecology, 1989, 85, 1-11.	1.2	71
60	A classification of the deciduous forest of eastern North America. Plant Ecology, 1989, 80, 167-181.	1.2	15
61	Mechanical Abrasion and Intercrown Spacing. American Midland Naturalist, 1984, 112, 24.	0.2	137