
J Daniel Prades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Chemosensors, 2022, 10, 28.	1.8	8
2	SOI Waveguide Bragg Grating Photonic Sensor for Human Body Temperature Measurement Based on Photonic Integrated Interrogator. Nanomaterials, 2022, 12, 29.	1.9	6
3	Plasmon expedited response time and enhanced response in gold nanoparticles-decorated zinc oxide nanowire-based nitrogen dioxide gas sensor at room temperature. Journal of Colloid and Interface Science, 2021, 582, 658-668.	5.0	28
4	Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sensors and Actuators B: Chemical, 2021, 330, 129281.	4.0	40
5	Photodoping-Inspired Room-Temperature Gas Sensing by Anatase TiO ₂ Quantum Dots. ACS Applied Nano Materials, 2021, 4, 2522-2527.	2.4	17
6	A Novel Approach for a Chip-Sized Scanning Optical Microscope. Micromachines, 2021, 12, 527.	1.4	1
7	Pursuing the Diffraction Limit with Nano-LED Scanning Transmission Optical Microscopy. Sensors, 2021, 21, 3305.	2.1	4
8	Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG. Sensors, 2021, 21, 6043.	2.1	1
9	Processing and Characterization of Monolithic Passive-Matrix GaN-Based MicroLED Arrays With Pixel Sizes From 5 to 50 Âμm. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	5
10	Inorganic nanomaterials. , 2020, , 17-35.		0
11	Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials. ACS Applied Energy Materials, 2020, 3, 2120-2129.	2.5	11
12	Femtosecond Laser Liftâ€Off with Subâ€Bandgap Excitation for Production of Freeâ€Standing GaN Lightâ€Emitting Diode Chips. Advanced Engineering Materials, 2020, 22, 1901192.	1.6	28
13	Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization. Microsystems and Nanoengineering, 2020, 6, 88.	3.4	30
14	Room-temperature 1550-nm lasing from tensile strain N-doped Ge quantum dots on Si. Journal of Modern Optics, 2020, 67, 1120-1127.	0.6	1
15	The Structural, Electronic, and Optical Properties of Ge/Si Quantum Wells: Lasing at a Wavelength of 1550 nm. Nanomaterials, 2020, 10, 1006.	1.9	2
16	Visible Light-Driven p-Type Semiconductor Gas Sensors Based on CaFe2O4 Nanoparticles. Sensors, 2020, 20, 850.	2.1	16
17	Nano illumination microscopy: a technique based on scanning with an array of individually addressable nanoLEDs. Optics Express, 2020, 28, 19044.	1.7	18
18	Instrumentation for Nano-Illumination Microscopy Based on InGaN/GaN NanoLED Arrays. , 2020, , .		0

#	Article	IF	CITATIONS
19	UV-LED Photo-Activated Room Temperature NO2 Sensors Based on Nanostructured ZnO/AlN Thin Films. Proceedings (mdpi), 2019, 2, .	0.2	3
20	BaTiO3 Based Nanostructures for Humidity Sensing Applications. Proceedings (mdpi), 2019, 15, .	0.2	8
21	Micro Light Plates for Photoactivated Micro-Power Gas Sensors. Proceedings (mdpi), 2019, 14, 8.	0.2	Ο
22	Design and fabrication of AlN-on-Si chirped surface acoustic wave resonators for label-free cell detection. Journal of Physics: Conference Series, 2019, 1319, 012011.	0.3	3
23	Piezoresistive Microcantilevers 3D-Patterned Using Zno-Nanorods@Silicon-Nanopillars for Room-Temperature Ethanol Detection. , 2019, , .		3
24	Nano-structured transmissive spectral filter matrix based on guided-mode resonances. Journal of the European Optical Society-Rapid Publications, 2019, 15, .	0.9	6
25	Ultra Low Power Mass-Producible Gas Sensor Based on Efficient Self-Heated GaN Nanorods. , 2019, , .		2
26	A Light-Activated Micropower Gas Sensor for the Detection of NO2 Down to the Parts Per Billion Range. , 2019, , .		0
27	Gas Ionization Phenomena at Nanowire Electrodes. , 2019, , .		0
28	A Microwatt Gas Sensor for No2 Detection in the Parts Per Billion Range. , 2019, , .		1
29	Efficient Self-Heating in Gallium Nitride Nanopillars for Ultra-Low-Power Mass-Producible Gas Sensors. , 2019, , .		Ο
30	Vertical GaN Nanowires and Nanoscale Light-Emitting-Diode Arrays for Lighting and Sensing Applications. ACS Applied Nano Materials, 2019, 2, 4133-4142.	2.4	44
31	How to implement a selective colorimetric gas sensor with off the shelf components?. Sensors and Actuators B: Chemical, 2019, 293, 41-44.	4.0	4
32	Continuous Live-Cell Culture Imaging and Single-Cell Tracking by Computational Lensfree LED Microscopy. Sensors, 2019, 19, 1234.	2.1	16
33	Micro light plates for low-power photoactivated (gas) sensors. Applied Physics Letters, 2019, 114, .	1.5	42
34	A Parts Per Billion (ppb) Sensor for NO ₂ with Microwatt (μW) Power Requirements Based on Micro Light Plates. ACS Sensors, 2019, 4, 822-826.	4.0	85
35	Compact, versatile and cost-effective colorimetric gas sensors. , 2019, , .		2
36	Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Applied Physics Reviews, 2019, 6, .	5.5	194

#	Article	IF	CITATIONS
37	Electron beam lithography for contacting single nanowires on non-flat suspended substrates. Sensors and Actuators B: Chemical, 2019, 286, 616-623.	4.0	7
38	Towards a super-resolution structured illumination microscope based on an array of nanoLEDs. , 2019, , .		2
39	Enhancement of the Sub-Band-Gap Photoconductivity in ZnO Nanowires through Surface Functionalization with Carbon Nanodots. Journal of Physical Chemistry C, 2018, 122, 1852-1859.	1.5	23
40	A review on efficient self-heating in nanowire sensors: Prospects for very-low power devices. Sensors and Actuators B: Chemical, 2018, 256, 797-811.	4.0	59
41	Machine-Readable Pattern for Colorimetric Sensor Interrogation. Proceedings (mdpi), 2018, 2, .	0.2	2
42	Top-Down Fabrication of Arrays of Vertical GaN Nanorods with Freestanding Top Contacts for Environmental Exposure. Proceedings (mdpi), 2018, 2, .	0.2	1
43	Pixel-Wise Multispectral Sensing System Using Nanostructured Filter Matrix for Biomedical Applications. Proceedings (mdpi), 2018, 2, 880.	0.2	1
44	Artificial Neural Networks for Automated Cell Quantification in Lensless LED Imaging Systems. Proceedings (mdpi), 2018, 2, .	0.2	1
45	Efficient Self-Heating in Nanowire Sensors: Prospects for Very-Low Power. Proceedings (mdpi), 2018, 2,	0.2	0
46	Visible Light Activated Room Temperature Gas Sensors Based on CaFe2O4 Nanopowders. Proceedings (mdpi), 2018, 2, 834.	0.2	3
47	Ideas for Specific, Low-Power and Cost-Effective Chemical Sensors. Proceedings (mdpi), 2018, 2, .	0.2	Ο
48	InGaN/GaN nanoLED Arrays as a Novel Illumination Source for Biomedical Imaging and Sensing Applications. Proceedings (mdpi), 2018, 2, .	0.2	8
49	An LED Platform for Micropower Gas Sensors. Proceedings (mdpi), 2018, 2, .	0.2	1
50	Continuous Live-Cell Culture Monitoring by Compact Lensless LED Microscopes. Proceedings (mdpi), 2018, 2, .	0.2	3
51	Sensitivity-Selectivity Trade-Offs in Surface Ionization Gas Detection. Nanomaterials, 2018, 8, 1017.	1.9	5
52	Pinhole microLED Array as Point Source Illumination for Miniaturized Lensless Cell Monitoring Systems. Proceedings (mdpi), 2018, 2, .	0.2	3
53	DNAâ€Origamiâ€Driven Lithography for Patterning on Gold Surfaces with Subâ€10 nm Resolution. Advanced Materials, 2017, 29, 1603233.	11.1	21
54	Colorimetric sensor for bad odor detection using automated color correction. , 2017, , .		1

#	Article	IF	CITATIONS
55	Highly Specific and Wide Range NO ₂ Sensor with Color Readout. ACS Sensors, 2017, 2, 1612-1618.	4.0	11
56	Electrospray as a suitable technique for manufacturing carbon-based devices. Journal Physics D: Applied Physics, 2017, 50, 315301.	1.3	14
57	Nanofabrication of Vertically Aligned 3D GaN Nanowire Arrays with Sub-50 nm Feature Sizes Using Nanosphere Lift-off Lithography. Proceedings (mdpi), 2017, 1, 309.	0.2	4
58	Gas Sensors Based on Individual (Ga, In)2O3 Nanowires. Proceedings (mdpi), 2017, 1, 321.	0.2	1
59	DNA-Origami-Aided Lithography for Sub-10 Nanometer Pattern Printing. Proceedings (mdpi), 2017, 1, 325.	0.2	1
60	NO2 Measurements with RGB Sensors for Easy In-Field Test. Proceedings (mdpi), 2017, 1, .	0.2	1
61	Vertical 3D GaN Nanoarchitectures towards an Integrated Optoelectronic Biosensing Platform in Microbial Fuel Cells. Proceedings (mdpi), 2017, 1, .	0.2	1
62	Individual Gallium Oxide Nanowires for Humidity Sensing at Low Temperature. Proceedings (mdpi), 2017, 1, .	0.2	4
63	LED-Based Tomographic Imaging for Live-Cell Monitoring of Pancreatic Islets in Microfluidic Channels. Proceedings (mdpi), 2017, 1, .	0.2	7
64	Charge Transfer Characteristics of n-type In _{0.1} Ga _{0.9} N Photoanode across Semiconductor–Liquid Interface. Journal of Physical Chemistry C, 2016, 120, 28917-28923.	1.5	2
65	Integrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors. ACS Sensors, 2016, 1, 1256-1264.	4.0	28
66	Self-heating in pulsed mode for signal quality improvement: Application to carbon nanostructures-based sensors. Sensors and Actuators B: Chemical, 2016, 226, 254-265.	4.0	20
67	Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sensors and Actuators B: Chemical, 2016, 232, 402-409.	4.0	31
68	Localized self-heating in large arrays of 1D nanostructures. Nanoscale, 2016, 8, 5082-5088.	2.8	16
69	Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency. Applied Catalysis B: Environmental, 2016, 189, 133-140.	10.8	72
70	NH3 sensing with self-assembled ZnO-nanowire μHP sensors in isothermal and temperature-pulsed mode. Sensors and Actuators B: Chemical, 2016, 226, 110-117.	4.0	34
71	A Low-cost Approach to Low-power Gas Sensors Based on Self-Heating Effects in Large Arrays of Nanostructures. Procedia Engineering, 2015, 120, 787-790.	1.2	11
72	A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays. Scientific World Journal, The, 2015, 2015, 1-14.	0.8	6

#	Article	IF	CITATIONS
73	Electrical simulator for devices based on quantum dot arrays. , 2015, , .		Ο
74	Low-cost, low-power, heater-free solid state gas sensors based on pulsed self-heated nanostructures. , 2015, , .		1
75	Locally Grown SnO 2 NWs as Low Power Ammonia Sensor. Procedia Engineering, 2015, 120, 215-219.	1.2	4
76	Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges. Procedia Engineering, 2015, 120, 488-491.	1.2	2
77	Self-heating effects in large arrangements of randomly oriented carbon nanofibers: Application to gas sensors. Sensors and Actuators B: Chemical, 2015, 211, 489-497.	4.0	41
78	Energetics and carrier transport in doped Si/SiO ₂ quantum dots. Nanoscale, 2015, 7, 12564-12571.	2.8	13
79	Facile integration of ordered nanowires in functional devices. Sensors and Actuators B: Chemical, 2015, 221, 104-112.	4.0	27
80	The Power of Models: Modeling Power Consumption for IoT Devices. IEEE Sensors Journal, 2015, 15, 5777-5789.	2.4	237
81	Elastic tunneling charge transport mechanisms in silicon quantum dots /SiO2 thin films and superlattices. Journal of Applied Physics, 2015, 117, 174307.	1.1	3
82	Electronic transport in QD based structures: from basic parameters to opto-electronic device simulations. Journal of Physics: Conference Series, 2015, 609, 012002.	0.3	0
83	Novel Approaches Towards Highly Selective Self-Powered Gas Sensors. Procedia Engineering, 2015, 120, 623-627.	1.2	5
84	A New Low Power Instrument for Impedance Measurements in Biomedicine Based on FFT. Application to Interleukin-10 Protein Detection. Procedia Engineering, 2014, 87, 312-315.	1.2	0
85	Highly Selective SAM–Nanowire Hybrid NO ₂ Sensor: Insight into Charge Transfer Dynamics and Alignment of Frontier Molecular Orbitals. Advanced Functional Materials, 2014, 24, 595-602.	7.8	71
86	Polarity-Driven Polytypic Branching in Cu-Based Quaternary Chalcogenide Nanostructures. ACS Nano, 2014, 8, 2290-2301.	7.3	47
87	A Highly Selective and Selfâ€Powered Gas Sensor Via Organic Surface Functionalization of p‧i/nâ€ZnO Diodes. Advanced Materials, 2014, 26, 8017-8022.	11.1	103
88	Band Engineered Epitaxial 3D GaN-InGaN Core–Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 2235-2240.	4.0	69
89	Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Applied Surface Science, 2014, 311, 177-181.	3.1	59
90	Sensors: Highly Selective SAM–Nanowire Hybrid NO ₂ Sensor: Insight into Charge Transfer Dynamics and Alignment of Frontier Molecular Orbitals (Adv. Funct. Mater. 5/2014). Advanced Functional Materials, 2014, 24, 566-566.	7.8	1

#	Article	IF	CITATIONS
91	Solar diode sensor: Sensing mechanism and applications. Nano Energy, 2013, 2, 514-522.	8.2	47
92	Interaction Mechanisms of Ammonia and Tin Oxide: A Combined Analysis Using Single Nanowire Devices and DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 3520-3526.	1.5	52
93	Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. CrystEngComm, 2013, 15, 8966.	1.3	25
94	Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sensors and Actuators B: Chemical, 2013, 181, 130-135.	4.0	148
95	Silicon quantum dots embedded in a SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>matrix: From structural study to carrier transport properties. Physical Review B. 2013. 88</mml:math 	1.1	16
96	Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sensors and Actuators B: Chemical, 2013, 187, 401-406.	4.0	75
97	Suppression of the NO2 interference by chromium addition in WO3-based ammonia sensors. Investigation of the structural properties and of the related sensing pathways. Sensors and Actuators B: Chemical, 2013, 187, 308-312.	4.0	7
98	Insight into the structural, electrical and photoresponse properties of individual Fe:SrTiO3 nanotubes. Materials Chemistry and Physics, 2013, 141, 9-13.	2.0	5
99	On-chip fabrication of surface ionisation gas sensors. Sensors and Actuators B: Chemical, 2013, 182, 25-30.	4.0	14
100	Flexible sensor based on carbon nanofibers with multifunctional sensing features. Talanta, 2013, 107, 239-247.	2.9	31
101	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3â^'xO4 nanolayers. Nanoscale, 2013, 5, 5561.	2.8	12
102	Transport in quantum dot stacks using the transfer Hamiltonian method in self-consistent field regime. Europhysics Letters, 2012, 98, 17003.	0.7	11
103	A transfer Hamiltonian approach for an arbitrary quantum dot array in the self-consistent field regime. Journal of Applied Physics, 2012, 112, .	1.1	9
104	Assessment and Modeling of NH3-SnO2 Interactions using Individual Nanowires. Procedia Engineering, 2012, 47, 293-297.	1.2	18
105	Localized growth and in situ integration of nanowires for device applications. Chemical Communications, 2012, 48, 4734.	2.2	32
106	Stability Model of Silicon Nanowire Polymorphs and First-Principle Conductivity of Bulk Silicon. Journal of Physical Chemistry C, 2012, 116, 22078-22085.	1.5	6
107	Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu ₂ CdSnSe ₄ . Chemistry of Materials, 2012, 24, 562-570.	3.2	153
108	Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications. Materials Chemistry and Physics, 2012, 135, 618-622.	2.0	18

#	Article	IF	CITATIONS
109	Coaxial n-ZnO/p-Si Nanowire Heterostructures for Energy and Sensing Applications. Procedia Engineering, 2012, 47, 1279-1280.	1.2	2
110	Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures. Journal of Materials Chemistry, 2012, 22, 20472.	6.7	87
111	P2.0.16 Solar Driven Zinc Oxide Based Heterojunctions for Gas Sensing Applications. , 2012, , .		3
112	Substrate effects on the structural and photoresponse properties of CVD grown ZnO nanostructures: aluminavs.silica. CrystEngComm, 2011, 13, 656-662.	1.3	10
113	Heteroepitaxy of SnO ₂ Nanowire Arrays on TiO ₂ Single Crystals: Growth Patterns and Tomographic Studies. Journal of Physical Chemistry C, 2011, 115, 15191-15197.	1.5	27
114	Nanomaterials make possible integrating gas sensors in wireless and ultralow power consumption motes. Procedia Engineering, 2011, 25, 1053-1056.	1.2	0
115	Methods and Techniques for the Fabrication of Gas Sensing Devices from Nanowires. Procedia Engineering, 2011, 25, 1409-1412.	1.2	0
116	Advanced Performances In Gas Sensors: Stretchable, Flexible, Wireless, Wearable. Procedia Engineering, 2011, 25, 1425-1428.	1.2	6
117	Simultaneous CO and Humidity Quantification with Self-Heated Nanowires in Pulsed Mode. Procedia Engineering, 2011, 25, 1485-1488.	1.2	1
118	Simultaneous Resistive and Ionization Readout of Single Metal Oxide Nanowires. Procedia Engineering, 2011, 25, 1489-1492.	1.2	0
119	Miniaturized ionization gas sensors from single metal oxide nanowires. Nanoscale, 2011, 3, 630-634.	2.8	43
120	Ultraviolet Raman scattering in ZnO nanowires: quasimode mixing and temperature effects. Journal of Raman Spectroscopy, 2011, 42, 153-159.	1.2	20
121	Characterization of individual barium titanate nanorods and their assessment as building blocks of new circuit architectures. Nanotechnology, 2011, 22, 385501.	1.3	18
122	Effectiveness of nitrogen incorporation to enhance the photoelectrochemical activity of nanostructured TiO ₂ :NH ₃ versus H ₂ –N ₂ annealing. Nanotechnology, 2011, 22, 235403.	1.3	22
123	Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors. Sensors and Actuators B: Chemical, 2010, 144, 1-5.	4.0	42
124	Advanced Electron Microscopy Techniques on Semiconductor Nanowires: from Atomic Density of States Analysis to 3D Reconstruction Models. , 2010, , .		0
125	On the photoconduction properties of low resistivity TiO ₂ nanotubes. Nanotechnology, 2010, 21, 445703.	1.3	50
126	Quantitative analysis of CO-humidity gas mixtures with self-heated nanowires operated in pulsed mode. Applied Physics Letters, 2010, 97, .	1.5	30

#	Article	IF	CITATIONS
127	Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2â^'x under different gas environments. Physical Chemistry Chemical Physics, 2010, 12, 2401.	1.3	29
128	Room temperature conductometric gas sensors based on metal oxide nanowires and nanocrystals. , 2009, , .		2
129	Direct observation of the gas-surface interaction kinetics in nanowires through pulsed self-heating assisted conductometric measurements. Applied Physics Letters, 2009, 95, .	1.5	33
130	Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases. , 2009, , .		1
131	Self-Heating in Individual Nanowires: a Major Breakthrough in Sensors Technology. , 2009, , .		О
132	Ab initio calculations of NO2 and SO2 chemisorption onto non-polar ZnO surfaces. Sensors and Actuators B: Chemical, 2009, 142, 179-184.	4.0	76
133	Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors and Actuators B: Chemical, 2009, 140, 337-341.	4.0	195
134	Ultimate response dynamics achieved with gas sensors based on self-heated nanowires. Procedia Chemistry, 2009, 1, 1427-1430.	0.7	3
135	Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking. Nanotechnology, 2009, 20, 145704.	1.3	84
136	A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Physical Chemistry Chemical Physics, 2009, 11, 10881.	1.3	63
137	Chemoresistive sensing of light alkanes with SnO2 nanocrystals: a DFT-based insight. Physical Chemistry Chemical Physics, 2009, 11, 3634.	1.3	10
138	On the role of individual metal oxide nanowires in the scaling down of chemical sensors. Physical Chemistry Chemical Physics, 2009, 11, 7105.	1.3	77
139	UV photosensors based on individual semiconductor nanowires. , 2009, , .		Ο
140	An experimental method to estimate the temperature of individual nanowires. International Journal of Nanotechnology, 2009, 6, 860.	0.1	12
141	Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors. , 2009, , 1-51.		1
142	Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2990-2994.	7.8	96
143	The Role of Surface Oxygen Vacancies in the NO ₂ Sensing Properties of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19540-19546.	1.5	181
144	Ultralow power consumption gas sensors based on self-heated individual nanowires. Applied Physics Letters, 2008, 93, .	1.5	184

#	Article	IF	CITATIONS
145	Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires. Journal of Physical Chemistry C, 2008, 112, 14639-14644.	1.5	130
146	Applications of atomistic calculations to chemical gas sensing. , 2008, , .		1
147	Gas Sensing Devices Based on 1D Metal-Oxide Nanostructures: Fabrication, Testing and Device Integration. ECS Transactions, 2008, 13, 57-64.	0.3	0
148	The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology, 2008, 19, 465501.	1.3	169
149	The role of oxygen vacancies in the sensing properties of SnO <inf>2</inf> nanocrystals. , 2008, , .		1
150	Concerning the 506cmâ^'1 band in the Raman spectrum of silicon nanowires. Applied Physics Letters, 2007, 91, 123107.	1.5	30
151	Bottom-up Fabrication of Individual SnO2 Nanowires-based Gas Sensors on Suspended Micromembranes. Materials Research Society Symposia Proceedings, 2007, 1052, 1.	0.1	0
152	First-Principles Study of NO[sub x] and SO[sub 2] Adsorption onto SnO[sub 2](110). Journal of the Electrochemical Society, 2007, 154, H675.	1.3	45
153	Portable microsensors based on individual SnO ₂ nanowires. Nanotechnology, 2007, 18, 495501.	1.3	68
154	Synthesis of Silicon Nanowires with Wurtzite Crystalline Structure by Using Standard Chemical Vapor Deposition. Advanced Materials, 2007, 19, 1347-1351.	11.1	155
155	Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films, 2007, 515, 8670-8673.	0.8	28
156	Defect study of SnO2 nanostructures by cathodoluminescence analysis: Application to nanowires. Sensors and Actuators B: Chemical, 2007, 126, 6-12.	4.0	93
157	Ab initio study of NOx compounds adsorption on SnO2 surface. Sensors and Actuators B: Chemical, 2007, 126, 62-67.	4.0	86