
Michail Tsakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9836880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Reliable Enantioselective Route to Mono-Protected N1-Cbz Piperazic Acid Building Block. Molecules, 2020, 25, 5939.	3.8	0
2	APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells. Cell Chemical Biology, 2018, 25, 1337-1349.e12.	5.2	27
3	Pharmacophore Mapping of Thienopyrimidine-Based Monophosphonate (ThP-MP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase. Journal of Medicinal Chemistry, 2017, 60, 2119-2134.	6.4	21
4	Total Synthesis and Biological Evaluation of Rakicidinâ€A and Discovery of a Simplified Bioactive Analogue. Angewandte Chemie, 2016, 128, 1042-1047.	2.0	12
5	The Rakicidin Family of Anticancer Natural Products – Synthetic Strategies towards a New Class of Hypoxia-Selective Cytotoxins. Synlett, 2016, 27, 1898-1906.	1.8	20
6	Total Synthesis and Biological Evaluation of Rakicidinâ€A and Discovery of a Simplified Bioactive Analogue. Angewandte Chemie - International Edition, 2016, 55, 1030-1035.	13.8	52
7	Npys-Mediated Elimination Reactions of Alcohols and Thiols: A Facile Route to Dehydroalanine and Dehydrobutyrine Building Blocks. Synlett, 2015, 26, 2697-2701.	1.8	8
8	Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Natural Product Reports, 2015, 32, 605-632.	10.3	155
9	Conjugating proline derivatives onto multi-walled carbon nanotubes: Preparation, characterization and catalytic activity in water. Materials Letters, 2015, 157, 212-214.	2.6	15
10	The amido-pentadienoate-functionality of the rakicidins is a thiol reactive electrophile – development of a general synthetic strategy. Chemical Communications, 2015, 51, 12427-12430.	4.1	22
11	A problem solving approach for the diastereoselective synthesis of (5′S)- and (5′R)-5′,8-cyclopurine lesions. Organic Chemistry Frontiers, 2014, 1, 698.	4.5	11
12	Fullerene–proline hybrids: Synthesis, characterization and organocatalytic properties in aldol reactions. Materials Letters, 2014, 137, 343-346.	2.6	17
13	Steroidal Cardiac Na ⁺ /K ⁺ ATPase Inhibitors Exhibit Strong Anti-Cancer Potential in vitro and in Prostate and Lung Cancer Xenografts in vivo. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 762-770.	1.7	22
14	Primary and secondary amine-(thio)ureas and squaramides andÂtheir applications in asymmetric organocatalysis. Tetrahedron, 2013, 69, 10199-10222.	1.9	143
15	Organocatalytic asymmetric domino Michael–Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones. Chemical Communications, 2013, 49, 2219.	4.1	54
16	Pyrrolidine-thioxotetrahydropyrimidinone as an efficient organocatalyst for the enantioselective Michael addition of cyclic ketones to nitrodienes. Tetrahedron, 2012, 68, 8630-8635.	1.9	15
17	Primary Amineâ€Thioureas with Improved Catalytic Properties for "Difficult―Michael Reactions: Efficient Organocatalytic Syntheses of (<i>S</i>)â€Baclofen, (<i>R</i>)â€Baclofen and (<i>S</i>)â€Phenibut. Advanced Synthesis and Catalysis, 2012, 354, 740-746.	4.3	59
18	Organocatalytic "Difficult―Michael Reaction of Ketones with Nitrodienes Utilizing a Primary Amine–Thiourea Based on Diâ€ <i>tert</i> â€butyl Aspartate. European Journal of Organic Chemistry, 2012, 2012, 576-580.	2.4	24