Paola Tognini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The gut microbiota of environmentally enriched mice regulates visual cortical plasticity. Cell Reports, 2022, 38, 110212.	2.9	23
2	Molecular Mechanisms Underlying the Bioactive Properties of a Ketogenic Diet. Nutrients, 2022, 14, 782.	1.7	18
3	Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29904-29913.	3.3	27
4	Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARÎ ³ activation. Nature Communications, 2020, 11, 4448.	5.8	19
5	Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes, 2020, 11, 742.	1.0	18
6	The Circadian Clock as an Essential Molecular Link Between Host Physiology and Microorganisms. Frontiers in Cellular and Infection Microbiology, 2019, 9, 469.	1.8	34
7	Interplay between Microbes and the Circadian Clock. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028365.	2.3	26
8	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
9	Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nature Communications, 2017, 8, 15488.	5.8	31
10	Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet. Cell Metabolism, 2017, 26, 523-538.e5.	7.2	162
11	Circadian Coordination of Antimicrobial Responses. Cell Host and Microbe, 2017, 22, 185-192.	5.1	50
12	Gut Microbiota: A Potential Regulator of Neurodevelopment. Frontiers in Cellular Neuroscience, 2017, 11, 25.	1.8	120
13	Gut microbiota directs <scp>PPAR</scp> γâ€driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Reports, 2016, 17, 1292-1303.	2.0	127
14	Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Frontiers in Cellular Neuroscience, 2015, 9, 331.	1.8	67
15	Experience-dependent DNA methylation regulates plasticity in the developing visual cortex. Nature Neuroscience, 2015, 18, 956-958.	7.1	46
16	Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nature Neuroscience, 2011, 14, 1237-1239.	7.1	117