
Grzegorz Tarapata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multilayer inkjet printed dew point hygrometer. Sensors and Actuators B: Chemical, 2018, 264, 76-83.	7.8	3
2	System for water level measurement based on pressure transducer. , 2016, , .		0
3	The capacitive sensor for liquid level measurement, fabricated with the inkjet printing technology. , 2016, , .		0
4	System for rugged surface detection based on MEMS inertial sensor signals analysis. Proceedings of SPIE, 2016, , .	0.8	0
5	Novel dew point hygrometer fabricated with inkjet printing technology. Sensors and Actuators A: Physical, 2016, 247, 641-646.	4.1	3
6	The concept and architecture of data communication in autonomous cleaning robots. , 2016, , .		0
7	Electronic system for floor surface type detection in robotics applications. Proceedings of SPIE, 2016,	0.8	1
8	Influence of the Top Dielectric Layer on Interdigitated Capacitive Dew Point Detector Operation. Procedia Engineering, 2015, 120, 1120-1123.	1.2	2
9	Novel Dew Point Hygrometer Fabricated with Inkjet Printing Technology. Procedia Engineering, 2015, 120, 1099-1102.	1.2	3
10	The Capacitive Sensor for Liquid Level Measurement Made with Ink-jet Printing Technology. Procedia Engineering, 2015, 120, 731-735.	1.2	30
11	Comparison of measurement methods for capacitive tactile sensors and their implementation. Proceedings of SPIE, 2015, , .	0.8	0
12	Methodology and technological aspects of the flexible substrate preparation for ink-jet printing technology. , 2013, , .		6
13	Characterization of inkjet-printing HF and UHF antennas for RFID applications. Proceedings of SPIE, 2013, , .	0.8	1
14	The ink-jet printing of microstrip lines on ferroelectric ceramic-polymer composites and its characterization in sub-THz range. Proceedings of SPIE, 2013, , .	0.8	1
15	Humidity Sensor Printed on Textile with Use of Ink-Jet Technology. Procedia Engineering, 2012, 47, 1366-1369.	1.2	61
16	The ink-jet printing humidity sorption sensor—modelling, design, technology and characterization. Measurement Science and Technology, 2012, 23, 014003.	2.6	40
17	Smart sensors interface for wireless data and power transmission. , 2009, , .		4
18	A MEMS-based super fast dew point hygrometer—construction and medical applications. Measurement Science and Technology, 2009, 20, 124008.	2.6	15

GRZEGORZ TARAPATA

#	Article	IF	CITATIONS
19	Comparison of performance of four RFID sensor antennas fabricated on different substrates. , 2009, , .		3
20	Comparison of transepidermal water loss (TEWL) measurements with two novel sensors based on different sensing principles. Sensors and Actuators A: Physical, 2008, 142, 67-72.	4.1	12
21	MEMS Based Dew Point Hygrometer With Optimal Self Adjusted Detection Threshold. , 2008, , .		0
22	Evaluation of water barrier function of human skin using super fast dew point hygrometer. , 2007, , .		1
23	<title>Diagnostic system with database application for laryngological and dermatological disorders</title> ., 2006, 6159, 1011.		2
24	<title>Microcontroller-based portable device for seeds moisture measurements</title> ., 2006, 6347, 606.		1
25	<title>Data analysis in a computer operated diagnostic system for laryngological and dermatological disorders</title> ., 2006, , .		0
26	<title>Portable device based on a microcontroller for measurement of TEWL factor</title> . , 2006, 6347, 601.		0
27	<title>Sensor of transepidermal water loss factor in human body</title> . , 2006, 6159, 1006.		0