John D Joannopoulos

List of Publications by Citations

Source: https://exaly.com/author-pdf/9835891/john-d-joannopoulos-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 10,440 41 102 h-index g-index citations papers 16.6 13,108 6.53 103 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
85	Topological photonics. <i>Nature Photonics</i> , 2014 , 8, 821-829	33.9	1659
84	A dielectric omnidirectional reflector. <i>Science</i> , 1998 , 282, 1679-82	33.3	952
83	Bound states in the continuum. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	900
82	TOPOLOGICAL MATTER. Experimental observation of Weyl points. <i>Science</i> , 2015 , 349, 622-4	33.3	609
81	Photonic Crystals 2011 ,		536
80	Weyl points and line nodes in gyroid photonic crystals. <i>Nature Photonics</i> , 2013 , 7, 294-299	33.9	418
79	Spawning rings of exceptional points out of Dirac cones. <i>Nature</i> , 2015 , 525, 354-8	50.4	392
78	Nanophotonic particle simulation and inverse design using artificial neural networks. <i>Science Advances</i> , 2018 , 4, eaar4206	14.3	335
77	Observation of bulk Fermi arc and polarization half charge from paired exceptional points. <i>Science</i> , 2018 , 359, 1009-1012	33.3	276
76	Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode. <i>Applied Physics Letters</i> , 2001 , 78, 563-565	3.4	228
75	Symmetry-protected topological photonic crystal in three dimensions. <i>Nature Physics</i> , 2016 , 12, 337-34	016.2	182
74	Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics. <i>Advanced Energy Materials</i> , 2014 , 4, 1400334	21.8	171
73	Near-field thermal radiation transfer controlled by plasmons in graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	159
72	Probing topological protection using a designer surface plasmon structure. <i>Nature Communications</i> , 2016 , 7, 11619	17.4	150
71	Transparent displays enabled by resonant nanoparticle scattering. <i>Nature Communications</i> , 2014 , 5, 31	52 17.4	143
70	Shrinking light to allow forbidden transitions on the atomic scale. <i>Science</i> , 2016 , 353, 263-9	33.3	134
69	Tailoring high-temperature radiation and the resurrection of the incandescent source. <i>Nature Nanotechnology</i> , 2016 , 11, 320-4	28.7	122

68	Bloch surface eigenstates within the radiation continuum. <i>Light: Science and Applications</i> , 2013 , 2, e84-e	284 6.7	117
67	All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6717-6721	11.5	107
66	Recent developments in high-temperature photonic crystals for energy conversion. <i>Energy and Environmental Science</i> , 2012 , 5, 8815	35.4	106
65	Negative effective permeability in polaritonic photonic crystals. <i>Applied Physics Letters</i> , 2004 , 85, 543-5	4 5 .4	94
64	Structural Colors from Fano Resonances. ACS Photonics, 2015, 2, 27-32	6.3	88
63	Low-Loss Plasmonic Dielectric Nanoresonators. <i>Nano Letters</i> , 2017 , 17, 3238-3245	11.5	84
62	Towards graphene plasmon-based free-electron infrared to X-ray sources. <i>Nature Photonics</i> , 2016 , 10, 46-52	33.9	76
61	Microfluidic directional emission control of an azimuthally polarized radial fibre laser. <i>Nature Photonics</i> , 2012 , 6, 229-233	33.9	69
60	Topological magnetoplasmon. <i>Nature Communications</i> , 2016 , 7, 13486	17.4	68
59	Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. <i>Scientific Reports</i> , 2016 , 6, 31908	4.9	64
58	Integrated fibres for self-monitored optical transport. <i>Nature Materials</i> , 2005 , 4, 820-825	27	58
57	Guiding 1.5 fh light in photonic crystals based on dielectric rods. <i>Applied Physics Letters</i> , 2004 , 85, 6110-	63.42	55
56	A general theoretical and experimental framework for nanoscale electromagnetism. <i>Nature</i> , 2019 , 576, 248-252	50.4	54
55	Controlling Cherenkov angles with resonance transition radiation. <i>Nature Physics</i> , 2018 , 14, 816-821	16.2	54
54	Crystalline silicon core fibres from aluminium core preforms. <i>Nature Communications</i> , 2015 , 6, 6248	17.4	53
53	Splashing transients of 2D plasmons launched by swift electrons. <i>Science Advances</i> , 2017 , 3, e1601192	14.3	52
52	Maximal spontaneous photon emission and energy loss from free electrons. <i>Nature Physics</i> , 2018 , 14, 894-899	16.2	52
51	Casimir forces in the time domain: Theory. <i>Physical Review A</i> , 2009 , 80,	2.6	52

50	Efficient plasmonic emission by the quantum Brenkov effect from hot carriers in graphene. <i>Nature Communications</i> , 2016 , 7, ncomms11880	17.4	51
49	Broadband surface-wave transformation cloak. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7635-8	11.5	47
48	An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15310-5	11.5	44
47	Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. <i>Applied Physics Reviews</i> , 2016 , 3, 011103	17.3	41
46	Casimir forces in the time domain: Applications. <i>Physical Review A</i> , 2010 , 81,	2.6	39
45	Optoelectronic Fibers via Selective Amplification of In-Fiber Capillary Instabilities. <i>Advanced Materials</i> , 2017 , 29, 1603033	24	38
44	Superlight inverse Doppler effect. <i>Nature Physics</i> , 2018 , 14, 1001-1005	16.2	34
43	Heuristic recurrent algorithms for photonic Ising machines. <i>Nature Communications</i> , 2020 , 11, 249	17.4	31
42	Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13607-1361.	2 ^{11.5}	31
41	Towards integrated tunable all-silicon free-electron light sources. <i>Nature Communications</i> , 2019 , 10, 3176	17.4	30
40	Kilometer-Long Ordered Nanophotonic Devices by Preform-to-Fiber Fabrication. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 1202-1213	3.8	30
39	Confined in-fiber solidification and structural control of silicon and silicon-germanium microparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7240-7245	11.5	29
38	Metamaterial broadband angular selectivity. <i>Physical Review B</i> , 2014 , 90,	3.3	29
37	Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159	4.9	28
36	Limits to the Optical Response of Graphene and Two-Dimensional Materials. <i>Nano Letters</i> , 2017 , 17, 54	0&±5 4 1	527
35	Thermally-drawn fibers with spatially-selective porous domains. <i>Nature Communications</i> , 2017 , 8, 364	17.4	26
34	Microstructure effects for Casimir forces in chiral metamaterials. <i>Physical Review B</i> , 2010 , 82,	3.3	25
33	Fabrication and characterization of fibers with built-in liquid crystal channels and electrodes for transverse incident-light modulation. <i>Applied Physics Letters</i> , 2012 , 101, 011108	3.4	25

32	Synthesis and observation of non-Abelian gauge fields in real space. <i>Science</i> , 2019 , 365, 1021-1025	33.3	24
31	Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum. <i>Scientific Reports</i> , 2016 , 6, 33394	4.9	24
30	Control of semiconductor emitter frequency by increasing polariton momenta. <i>Nature Photonics</i> , 2018 , 12, 423-429	33.9	24
29	Ovonic Memory Switching in Multimaterial Fibers. <i>Advanced Functional Materials</i> , 2011 , 21, 1095-1101	15.6	24
28	Predictive and generative machine learning models for photonic crystals. <i>Nanophotonics</i> , 2020 , 9, 4183	-461 9 2	20
27	Direct imaging of isofrequency contours in photonic structures. <i>Science Advances</i> , 2016 , 2, e1601591	14.3	18
26	Sputtered Tantalum Photonic Crystal Coatings for High-Temperature Energy Conversion Applications. <i>IEEE Nanotechnology Magazine</i> , 2016 , 15, 303-309	2.6	17
25	Light emission based on nanophotonic vacuum forces. <i>Nature Physics</i> , 2019 , 15, 1284-1289	16.2	17
24	Fabrication and characterization of thermally drawn fiber capacitors. <i>Applied Physics Letters</i> , 2013 , 102, 152908	3.4	17
23	Invisible metallic mesh. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2568-72	11.5	16
22	Digital design of multimaterial photonic particles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 6839-44	11.5	14
21	Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics. <i>Nano Letters</i> , 2016 , 16, 4110-7	11.5	13
20	Narrowband Metamaterial Absorber for Terahertz Secure Labeling. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , 2017 , 38, 1120-1129	2.2	13
19	A high-efficiency regime for gas-phase terahertz lasers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6614-6619	11.5	11
18	A framework for scintillation in nanophotonics <i>Science</i> , 2022 , 375, eabm9293	33.3	11
17	Constructing Designer Atoms Via Resonant Graphene-Induced Lamb Shifts. ACS Photonics, 2017, 4, 3098-3105	6.3	9
16	Structural anisotropy and orientation-induced Casimir repulsion in fluids. <i>Physical Review A</i> , 2011 , 83,	2.6	9
15	Controlling spins with surface magnon polaritons. <i>Physical Review B</i> , 2019 , 100,	3.3	8

14	Substrate-Independent Light Confinement in Bioinspired All-Dielectric Surface Resonators. <i>ACS Photonics</i> , 2016 , 3, 532-536	6.3	7
13	Plasmonics in argentene. <i>Physical Review Materials</i> , 2020 , 4,	3.2	7
12	Control of quantum electrodynamical processes by shaping electron wavepackets. <i>Nature Communications</i> , 2021 , 12, 1700	17.4	7
11	Casimir Light in Dispersive Nanophotonics. <i>Physical Review Letters</i> , 2021 , 127, 053603	7.4	5
10	Nonperturbative Quantum Electrodynamics in the Cherenkov Effect. <i>Physical Review X</i> , 2018 , 8,	9.1	4
9	Toward 3D-Printed Inverse-Designed Metaoptics. ACS Photonics, 2022, 9, 43-51	6.3	3
8	Non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly pairs. <i>Light: Science and Applications</i> , 2020 , 9, 177	16.7	2
7	Quasi-normal mode theory of the scattering matrix, enforcing fundamental constraints for truncated expansions. <i>Physical Review Research</i> , 2021 , 3,	3.9	2
6	Controlling two-photon emission from superluminal and accelerating index perturbations. <i>Nature Physics</i> , 2022 , 18, 67-74	16.2	1
5	Acoustics: Piezoelectric Fibers for Conformal Acoustics (Adv. Mater. 39/2012). <i>Advanced Materials</i> , 2012 , 24, 5400-5400	24	
4	Negative Refraction and Subwavelength Imaging in Photonic Crystals 2005 , 269-312		
3	First-principles Calculation of Electron Mobilities in Ultrathin SOI MOSFETs. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 829, 326		
2	Structural and Mechanical Properties of Boron Nanotubes. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 791, 346		
1	Enhanced Emission from a Light-Emitting Diode Modified by a Photonic Crystal. <i>Materials Research</i>		