Yingxiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9835106/publications.pdf Version: 2024-02-01

ΥΙΝΟΧΙΛΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	9.3	294
2	Activities and specificities of <scp>CRISPR</scp> /Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 2019, 17, 362-372.	8.3	192
3	Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 2018, 11, 245-256.	8.3	179
4	Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.	3.8	172
5	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	9.3	140
6	Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant, 2018, 11, 999-1002.	8.3	136
7	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	8.3	120
8	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	9.3	116
9	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	9.3	99
10	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	12.8	79
11	CRISPR ribonucleoprotein-mediated genetic engineering in plants. Plant Communications, 2021, 2, 100168.	7.7	77
12	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	8.8	76
13	CRISPRâ€Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnology Journal, 2020, 18, 1351-1353.	8.3	42
14	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	5.2	21
15	CRISPR enables directed evolution in plants. Genome Biology, 2019, 20, 83.	8.8	17
16	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 74-87.	3.9	16
17	Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Horticulture Research, 2022, 9,	6.3	12
18	Plant Gene Knockout and Knockdown by CRISPR-Cpf1 (Cas12a) Systems. Methods in Molecular Biology, 2019, 1917, 245-256.	0.9	11

#	Article	IF	CITATIONS
19	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	3.5	3