
Simon J Judd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering, ASCE, 2002, 128, 1018-1029.	0.7	597
2	The status of membrane bioreactor technology. Trends in Biotechnology, 2008, 26, 109-116.	4.9	501
3	Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 2003, 227, 81-93.	4.1	447
4	Characterisation of textile wastewaters ―a review. Environmental Technology (United Kingdom), 1994, 15, 917-929.	1.2	440
5	Flocculation modelling: a review. Water Research, 1999, 33, 1579-1592.	5.3	377
6	Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 2000, 18, 119-130.	3.9	357
7	Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, 2010, 71, 137-143.	3.9	323
8	Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. Journal of Membrane Science, 2003, 218, 117-129.	4.1	249
9	Magnetic amelioration of scale formation. Water Research, 1996, 30, 247-260.	5.3	220
10	The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal, 2016, 305, 37-45.	6.6	201
11	Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. Journal of Membrane Science, 2006, 283, 164-171.	4.1	185
12	The cost of a large-scale hollow fibre MBR. Water Research, 2010, 44, 5274-5283.	5.3	173
13	Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology, 2004, 79, 1043-1049.	1.6	166
14	Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environmental Technology (United Kingdom), 2011, 32, 921-932.	1.2	166
15	Sub-critical flux fouling in membrane bioreactors — a review of recent literature. Desalination, 2005, 174, 221-230.	4.0	158
16	Membrane bioreactors: Two decades of research and implementation. Desalination, 2011, 273, 148-154.	4.0	150
17	Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 2007, 41, 1038-1044.	5.3	137
18	Optimisation of combined coagulation and microfiltration for water treatment. Water Research, 2001, 35, 2895-2904.	5.3	129

#	Article	IF	CITATIONS
19	Membrane technology costs and me. Water Research, 2017, 122, 1-9.	5.3	123
20	Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor. Water Research, 2012, 46, 4499-4507.	5.3	120
21	THM and HAA formation from NOM in raw and treated surface waters. Water Research, 2017, 112, 226-235.	5.3	120
22	The status of forward osmosis technology implementation. Desalination, 2019, 461, 10-21.	4.0	120
23	Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment. Journal of Membrane Science, 2007, 289, 241-248.	4.1	116
24	An aeration energy model for an immersed membrane bioreactor. Water Research, 2008, 42, 4761-4770.	5.3	116
25	Nutrient addition to enhance biological treatment of greywater. Water Research, 2001, 35, 2702-2710.	5.3	108
26	Algal remediation of CO2 and nutrient discharges: A review. Water Research, 2015, 87, 356-366.	5.3	105
27	Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 2019, 662, 662-671.	3.9	105
28	Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter. Chemosphere, 2017, 170, 1-9.	4.2	101
29	A review of membrane bioreactor potential for nitrate removal from drinking water. Desalination, 2006, 196, 135-148.	4.0	97
30	Coagulant Recovery from Water Treatment Residuals: A Review of Applicable Technologies. Critical Reviews in Environmental Science and Technology, 2014, 44, 2675-2719.	6.6	97
31	Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal of Membrane Science, 2011, 382, 41-49.	4.1	96
32	Air sparging of a submerged MBR for municipal wastewater treatment. Process Biochemistry, 2002, 37, 915-920.	1.8	94
33	The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renewable and Sustainable Energy Reviews, 2017, 71, 379-387.	8.2	93
34	Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecological Engineering, 2018, 110, 1-7.	1.6	87
35	The size and performance of offshore produced water oil-removal technologies for reinjection. Separation and Purification Technology, 2014, 134, 241-246.	3.9	83
36	Magnetic treatment of calcium carbonate scale—effect of pH control. Water Research, 1997, 31, 339-342.	5.3	82

#	Article	IF	CITATIONS
37	Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Chemical Engineering Research and Design, 2019, 124, 240-250.	2.7	75
38	Ceramic membrane filtration of produced water: Impact of membrane module. Separation and Purification Technology, 2016, 165, 214-221.	3.9	73
39	Membrane bioreactors and their role in wastewater reuse. Water Science and Technology, 2000, 41, 197-204.	1.2	71
40	A comparison of submerged and sidestream tubular membrane bioreactor configurations. Desalination, 2005, 173, 113-122.	4.0	71
41	The fate of chlorine and organic materials in swimming pools. Chemosphere, 2003, 51, 869-879.	4.2	70
42	Membrane bioreactors for use in small wastewater treatment plants: membrane materials and effluent quality. Water Science and Technology, 2000, 41, 205-211.	1.2	69
43	BSM-MBR: A benchmark simulation model to compare control and operational strategies for membrane bioreactors. Water Research, 2011, 45, 2181-2190.	5.3	69
44	The Commercial Status of Membrane Bioreactors for Municipal Wastewater. Separation Science and Technology, 2010, 45, 850-857.	1.3	67
45	Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse. Separation and Purification Technology, 2014, 127, 77-83.	3.9	67
46	Biological treatment of ion-exchange brine regenerant for re-use: A review. Separation and Purification Technology, 2008, 62, 264-272.	3.9	65
47	Zero-Valent Iron for Water Treatment. Environmental Technology (United Kingdom), 2000, 21, 661-670.	1.2	64
48	The control of bubble size in carbonated beverages. Chemical Engineering Science, 2002, 57, 565-573.	1.9	62
49	Pre-coagulation for microfiltration of an upland surface water. Water Research, 2004, 38, 455-465.	5.3	62
50	An economic assessment of coagulant recovery from water treatment residuals. Desalination, 2012, 287, 132-137.	4.0	62
51	Disinfection by-product formation in swimming pool waters: a simple mass balance. Water Research, 2000, 34, 1611-1619.	5.3	57
52	The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: A brief review. Journal of Environmental Monitoring, 2010, 12, 110-118.	2.1	57
53	Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water. Water Research, 2020, 174, 115613.	5.3	55
54	The cost of a package plant membrane bioreactor. Water Research, 2007, 41, 2627-2635.	5.3	54

#	Article	lF	CITATIONS
55	Sludge characteristics and membrane fouling in full-scale submerged membrane bioreactors. Desalination, 2008, 219, 240-249.	4.0	54
56	Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging. Water Science and Technology, 2003, 47, 149-154.	1.2	53
57	Thermochemical Treatment of Sewage Sludge. Water and Environment Journal, 2000, 14, 57-65.	1.0	52
58	Chemical cleaning of potable water membranes: The cost benefit of optimisation. Water Research, 2010, 44, 1389-1398.	5.3	51
59	Antiscale magnetic pretreatment of reverse osmosis feedwater. Desalination, 1997, 110, 151-165.	4.0	50
60	Sustainable Flux Fouling in a Membrane Bioreactor: Impact of Flux and MLSS. Separation Science and Technology, 2006, 41, 1279-1291.	1.3	50
61	Bacterial diversity is determined by volume in membrane bioreactors. Environmental Microbiology, 2006, 8, 1048-1055.	1.8	50
62	Denitrification from drinking water using a membrane bioreactor: Chemical and biochemical feasibility. Water Research, 2007, 41, 4242-4250.	5.3	46
63	Low-Cost Membranes for Use in a Submerged MBR. Chemical Engineering Research and Design, 2001, 79, 183-188.	2.7	45
64	Trihalomethane formation during swimming pool water disinfection using hypobromous and hypochlorous acids. Water Research, 1995, 29, 1203-1206.	5.3	44
65	Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse. Water Research, 2010, 44, 4047-4056.	5.3	44
66	Coagulant recovery and reuse for drinking water treatment. Water Research, 2016, 88, 502-509.	5.3	44
67	Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater <i>Chlorella vulgaris</i> . Environmental Technology (United) Tj ETQq1 1 0.7843	814 1r.g BT /	Overłack 10
68	Magnetically Augmented Water Treatment. Chemical Engineering Research and Design, 1997, 75, 98-104.	2.7	43
69	Influence of backwashing, flux and temperature on microfiltration for wastewater reuse. Separation and Purification Technology, 2012, 96, 147-153.	3.9	42
70	Wastewater polishing using membrane technology: a review of existing installations. Environmental Technology (United Kingdom), 2013, 34, 617-627.	1.2	42
71	The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environmental Technology (United Kingdom), 2013, 34, 3183-3189.	1.2	42
72	Reuse of recovered coagulants in water treatment: An investigation on the effect coagulant purity has on treatment performance. Separation and Purification Technology, 2014, 131, 69-78.	3.9	40

#	Article	IF	CITATIONS
73	Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process. Water Research, 2015, 87, 20-28.	5.3	40
74	Membrane life estimation in full-scale immersed membrane bioreactors. Journal of Membrane Science, 2011, 378, 95-100.	4.1	39
75	Methods for understanding organic fouling in MBRs. Water Science and Technology, 2004, 49, 237-244.	1.2	38
76	A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Chemical Engineering Research and Design, 2019, 127, 90-102.	2.7	38
77	Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater. Water Research, 2016, 88, 380-388.	5.3	37
78	Kinetics of Reductive Degradation of Azo Dye by Zero-Valent Iron. Chemical Engineering Research and Design, 2001, 79, 297-303.	2.7	36
79	Characterisation of dead-end ultrafiltration of biotreated domestic wastewater. Journal of Membrane Science, 2004, 231, 91-98.	4.1	36
80	The impact of mechanical shear on membrane flux and energy demand. Journal of Membrane Science, 2016, 516, 56-63.	4.1	35
81	Submerged membrane bioreactors: flat plate or hollow fibre?. Filtration and Separation, 2002, 39, 30-31.	0.2	34
82	A bioassimilation and bioaccumulation model for the removal of heavy metals from wastewater using algae: New strategy. Chemical Engineering Research and Design, 2020, 144, 52-64.	2.7	32
83	Bacterial rejection in crossflow microfiltration of sewage. Desalination, 2000, 127, 251-260.	4.0	30
84	Granular activated carbon for removal of organic matter and turbidity from secondary wastewater. Water Science and Technology, 2013, 67, 846-853.	1.2	28
85	A mathematical model for carbon fixation and nutrient removal by an algal photobioreactor. Chemical Engineering Science, 2016, 153, 354-362.	1.9	28
86	The cost of a small membrane bioreactor. Water Science and Technology, 2015, 72, 1739-1746.	1.2	27
87	Optimisation of dead-end filtration conditions for an immersed anoxic membrane bioreactor. Journal of Membrane Science, 2008, 325, 940-946.	4.1	26
88	Reduction of faecal coliform bacteria in sewage effluents using a microporous polymeric membrane. Water Research, 1998, 32, 1417-1422.	5.3	25
89	Waterâ€Recycling Technologies in the UK. Water and Environment Journal, 2001, 15, 282-286.	1.0	24
90	Critical analysis of submerged membrane sequencing batch reactor operating conditions. Water Research, 2005, 39, 4011-4019.	5.3	24

#	Article	IF	CITATIONS
91	Precoagulation-microfiltration for wastewater reuse. Water Research, 2011, 45, 6471-6478.	5.3	24
92	Assessment of fouling of an RO process dedicated to indirect potable reuse. Desalination and Water Treatment, 2012, 40, 302-308.	1.0	24
93	The status of potable water reuse implementation. Water Research, 2022, 214, 118198.	5.3	24
94	Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration. Water Research, 2010, 44, 69-76.	5.3	23
95	Optimising operation of an integrated membrane system (IMS) — A Box–Behnken approach. Desalination, 2011, 273, 136-141.	4.0	23
96	NDMA formation in secondary wastewater effluent. Chemosphere, 2013, 91, 83-87.	4.2	23
97	The cost and performance of an MF-RO/NF plant for trace metal removal. Desalination, 2013, 309, 181-186.	4.0	23
98	Influence of substrate on fouling in anoxic immersed membrane bioreactors. Water Research, 2007, 41, 3859-3867.	5.3	21
99	Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I Evaluation of biomass adsorption capacity. Environmental Technology (United Kingdom), 2010, 31, 705-723.	1.2	21
100	Permeability and clogging in an immersed hollow fibre membrane bioreactor. Journal of Membrane Science, 2012, 421-422, 342-348.	4.1	21
101	Pre-treatment of surface waters for ceramic microfiltration. Separation and Purification Technology, 2016, 163, 173-180.	3.9	21
102	Ceramic vs polymeric membrane implementation for potable water treatment. Water Research, 2022, 215, 118269.	5.3	21
103	Immersed membrane bioreactors for nitrate removal from drinking water: Cost and feasibility. Desalination, 2008, 231, 52-60.	4.0	20
104	Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II Removal at varying sludge age. Environmental Technology (United Kingdom), 2010, 31, 725-743.	1.2	20
105	Criticality of Flux and Aeration for a Hollow Fiber Membrane Bioreactor. Separation Science and Technology, 2010, 45, 956-961.	1.3	20
106	Membrane technology. , 2003, , 13-74.		17
107	Occurrence and fate of pharmaceutical and personal care products in a sewage treatment works. Journal of Environmental Monitoring, 2011, 13, 137-144.	2.1	17
108	Economical Evaluation and Operating Experiences of a Small-Scale MBR for Nonpotable Reuse. Journal of Environmental Engineering, ASCE, 2012, 138, 594-600.	0.7	17

#	Article	IF	CITATIONS
109	Optimization of cultivation conditions for combined nutrient removal and CO2fixation in a batch photobioreactor. Journal of Chemical Technology and Biotechnology, 2017, 92, 1085-1093.	1.6	17
110	Clogging vs. fouling in immersed membrane bioreactors. Water Research, 2018, 144, 46-54.	5.3	17
111	An empirical determination of the whole-life cost of FO-based open-loop wastewater reclamation technologies. Water Research, 2019, 163, 114879.	5.3	17
112	The Impact of Intermittent Aeration on the Operation of Airâ€Lift Tubular Membrane Bioreactors under Subâ€Critical Conditions. Separation Science and Technology, 2006, 41, 1293-1302.	1.3	16
113	The determination and origin of fibre clogging in membrane bioreactors. Journal of Membrane Science, 2011, 375, 198-203.	4.1	16
114	THM precursor rejection by UF membranes treating Scottish surface waters. Separation and Purification Technology, 2015, 149, 381-388.	3.9	16
115	Comparison of dead-end and continuous filtration conditions in a denitrification membrane bioreactor. Journal of Membrane Science, 2011, 369, 167-173.	4.1	15
116	Comparative power demand of mechanical and aeration imposed shear in an immersed membrane bioreactor. Water Research, 2017, 126, 208-215.	5.3	15
117	Microfiltration membrane plant start up: A case study with autopsy and permeability recovery analysis. Environmental Technology (United Kingdom), 2009, 30, 629-639.	1.2	14
118	Evaluation of intermittent air sparging in an anoxic denitrification membrane bioreactor. Water Science and Technology, 2010, 61, 2219-2225.	1.2	14
119	Low-pressure membrane technology for potable water filtration: true costs. Water Research, 2021, 191, 116826.	5.3	14
120	High-rate clarification of municipal wastewaters: a brief appraisal. Journal of Chemical Technology and Biotechnology, 2004, 79, 914-917.	1.6	13
121	Experimental evaluation of intermittent aeration of a hollow fibre membrane bioreactor. Water Science and Technology, 2011, 63, 1217-1223.	1.2	13
122	Effect of cleaning protocol on membrane permeability recovery: A sensitivity analysis. Journal - American Water Works Association, 2010, 102, 78-86.	0.2	12
123	Characterisation of zirconium/poly(acrylic acid) low pressure dynamically formed membranes by use of the extended Nernst-Planck equation. Journal of Membrane Science, 1998, 138, 135-140.	4.1	11
124	Filtration of aqueous suspensions through fibrous media under the influence of an electric field. Colloids and Surfaces, 1989, 39, 189-206.	0.9	9
125	Effect of salt concentration on the structure of low-pressure dynamically-formed membranes. Journal of Membrane Science, 1996, 116, 117-127.	4.1	9
126	Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology (United Kingdom), 2019, 40, 2093-2099.	1.2	8

#	Article	IF	CITATIONS
127	Polarization and back em.f. in electrodialysis. Journal of Applied Electrochemistry, 1993, 23, 1117-1124.	1.5	7
128	Powdered Activated Carbon-Microfiltration for Waste-Water Reuse. Separation Science and Technology, 2013, 48, 690-698.	1.3	7
129	Industrial effluent treatment with immersed MBRs: treatability and cost. Water Science and Technology, 2019, 80, 762-772.	1.2	7
130	Electrophoretically-assisted depth filtration of aqueous suspensions through various fibrous media. Chemical Engineering Science, 1991, 46, 419-428.	1.9	6
131	Examination of the permeability dependence on ionic strength of low-pressure dynamically-formed membranes. Journal of Membrane Science, 1996, 116, 129-139.	4.1	6
132	Electrochemical monitoring of water remediation by metallic iron. Journal of Applied Electrochemistry, 2001, 31, 1339-1344.	1.5	6
133	Domestic carbonation process optimisation. Journal of Food Engineering, 2002, 52, 405-412.	2.7	6
134	Reproducibility and applicability of the flux step test for a hollow fibre membrane bioreactor. Separation and Purification Technology, 2013, 107, 144-149.	3.9	6
135	Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters. Separation Science and Technology, 2016, 51, 1380-1388.	1.3	6
136	Biological treatment and thickening with a hollow fibre membrane bioreactor. Water Research, 2014, 58, 29-37.	5.3	5
137	Investigating the significance of coagulation kinetics on maintaining membrane permeability in an MBR following reactive coagulant dosing. Journal of Membrane Science, 2016, 516, 64-73.	4.1	5
138	Sorptive removal of disinfection by-product precursors from UK lowland surface waters: Impact of molecular weight and bromide. Science of the Total Environment, 2021, 754, 142152.	3.9	5
139	The Impact of Mechanically-Imposed Shear on Clogging, Fouling and Energy Demand for an Immersed Membrane Bioreactor. Membranes, 2018, 8, 104.	1.4	4
140	Influence of configuration and substrate on the properties of dynamically formed membranes. Water Science and Technology, 1996, 34, 255.	1.2	3
141	A statistical method for quantifying the different fouling effects of three combined water sources on an ultrafiltration membrane. Desalination, 2002, 142, 143-149.	4.0	3
142	A synopsis of membrane technologies in UK municipal potable water treatment: history, status and prospects. Water and Environment Journal, 2006, 20, 060606025927013-???.	1.0	3
143	Influence of composite particle formation on the performance and economics of grit removal. Water Research, 2017, 108, 444-450.	5.3	3
144	A Brief Review of the Status of Low-Pressure Membrane Technology Implementation for Petroleum Industry Effluent Treatment. Membranes, 2022, 12, 391.	1.4	3

#	Article	IF	CITATIONS
145	The use of an applied electric field for the filtration of particles from a low conductivity aqueous suspension. Chemical Engineering Science, 1994, 49, 2371-2378.	1.9	2
146	Entropy and Water Management. Water and Environment Journal, 2000, 14, 442-446.	1.0	2
147	Direct molecular hydrogen sulphide scrubbing with hollow fibre membranes. Water Science and Technology, 2001, 44, 135-142.	1.2	2
148	Screening optimisation for indirect potable reuse. Water Science and Technology, 2011, 63, 2846-2852.	1.2	2
149	Fate and removal of permethrin by conventional activated sludge treatment. Environmental Technology (United Kingdom), 2011, 32, 1367-1373.	1.2	2
150	Biomass properties and permeability in an immersed hollow fibre membrane bioreactor at high sludge concentrations. Water Science and Technology, 2014, 69, 2324-2330.	1.2	2
151	Magnetically-Enhanced Disinfection of Swimming Pool Waters. Chemical Engineering Research and Design, 2000, 78, 213-218.	2.7	1
152	THE IMPACT OF MECHANICAL RELIABILITY ON THE FINANCIAL RETURN OF A WATERâ€RECYCLING PLANT. Water and Environment Journal, 2004, 18, 50-53.	1.0	1
153	Comment on "ultrafiltration behaviour of extracellular and metabolic products in activated sludge system with UF separation process― Water Research, 2001, 35, 3512-3513.	5.3	0
154	A statistical approach to the optimisation of membrane operation. Water and Environment Journal, 2006, 20, 96-100.	1.0	0
155	Fouling potential and membrane fouling determination during the treatment of sewage and stabilized leachate using a pilot scale submerged MBR. Proceedings of the Water Environment Federation, 2007, 2007, 6469-6495.	0.0	0
156	Character of Extracellular Polymeric Substances and Soluble Microbial Products and Their Effect on Membrane Hydraulics During Airlift Membrane Bioreactor Applications. Water Environment Research, 2008, 80, 2193-2201.	1.3	0
157	The future prospects for chemical biocides for pool water treatment. , 0, , 137-144.		0