
Zhanpeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation, 2009, 119, 2772-2786.	8.2	756
2	LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity. Circulation, 2014, 130, 1452-1465.	1.6	425
3	mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts. Circulation Research, 2013, 112, 1557-1566.	4.5	348
4	MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress. Circulation Research, 2013, 112, 1234-1243.	4.5	256
5	Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nature Communications, 2019, 10, 1802.	12.8	190
6	Loss of MicroRNA-155 Protects the Heart From Pathological Cardiac Hypertrophy. Circulation Research, 2014, 114, 1585-1595.	4.5	148
7	Induction of MicroRNA-1 by Myocardin in Smooth Muscle Cells Inhibits Cell Proliferation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 368-375.	2.4	121
8	snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Research, 2006, 34, 5112-5123.	14.5	112
9	The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. Journal of Cell Biology, 2011, 194, 551-565.	5.2	99
10	Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma. Bone Research, 2018, 6, 11.	11.4	99
11	miR-22 in cardiac remodeling and disease. Trends in Cardiovascular Medicine, 2014, 24, 267-272.	4.9	76
12	Loss of MicroRNAs in Neural Crest Leads to Cardiovascular Syndromes Resembling Human Congenital Heart Defects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2575-2586.	2.4	75
13	Genome-wide analyses of two families of snoRNA genes from Drosophila melanogaster, demonstrating the extensive utilization of introns for coding of snoRNAs. Rna, 2005, 11, 1303-1316.	3.5	69
14	Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovascular Research, 2016, 112, 543-554.	3.8	64
15	Specific ablation of CD4 ⁺ T-cells promotes heart regeneration in juvenile mice. Theranostics, 2020, 10, 8018-8035.	10.0	43
16	Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis. Journal of Clinical Investigation, 2015, 125, 4122-4134.	8.2	42
17	Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy. Clinical Science, 2017, 131, 2885-2900.	4.3	40
18	Long noncoding RNA Cfast regulates cardiac fibrosis. Molecular Therapy - Nucleic Acids, 2021, 23, 377-392.	5.1	33

ZHANPENG HUANG

#	Article	IF	CITATIONS
19	Regulation of myonuclear positioning and muscle function by the skeletal muscle-specific CIP protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19254-19265.	7.1	32
20	CIP, a Cardiac Isl1-Interacting Protein, Represses Cardiomyocyte Hypertrophy. Circulation Research, 2012, 110, 818-830.	4.5	28
21	Genomewide Analysis of Box C/D and Box H/ACA snoRNAs in <i>Chlamydomonas reinhardtii</i> Reveals an Extensive Organization Into Intronic Gene Clusters. Genetics, 2008, 179, 21-30.	2.9	27
22	Maf1 ameliorates cardiac hypertrophy by inhibiting RNA polymerase III through ERK1/2. Theranostics, 2019, 9, 7268-7281.	10.0	27
23	MicroRNAs in Cardiac Remodeling and Disease. Journal of Cardiovascular Translational Research, 2010, 3, 212-218.	2.4	26
24	The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Molecular Therapy, 2021, 29, 2253-2267.	8.2	24
25	Different Expression Strategy: Multiple Intronic Gene Clusters of Box H/ACA snoRNA in Drosophila melanogaster. Journal of Molecular Biology, 2004, 341, 669-683.	4.2	22
26	Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). Hypertension, 2020, 75, 79-90.	2.7	20
27	Build A Braveheart: The Missing Linc (RNA). Circulation Research, 2013, 112, 1532-1534.	4.5	18
28	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	17.1	18
29	A combined computational and experimental analysis of two families of snoRNA genes from Caenorhabditis elegans, revealing the expression and evolution pattern of snoRNAs in nematodes. Genomics, 2007, 89, 490-501.	2.9	17
30	microRNAs in cardiac regeneration and cardiovascular disease. Science China Life Sciences, 2013, 56, 907-913.	4.9	17
31	A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. Molecular Therapy - Nucleic Acids, 2020, 20, 673-686.	5.1	17
32	LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. ELife, 2019, 8, .	6.0	17
33	Determination of MiRNA Targets in Skeletal Muscle Cells. Methods in Molecular Biology, 2012, 798, 475-490.	0.9	16
34	Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts. Journal of Biological Chemistry, 2017, 292, 9540-9550.	3.4	16
35	Intercalated disc protein XinÎ ² is required for Hippo-YAP signaling in the heart. Nature Communications, 2020, 11, 4666.	12.8	16
36	miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism: Clinical and Experimental, 2021, 117, 154723.	3.4	15

ZHANPENG HUANG

#	Article	IF	CITATIONS
37	miR-22 in Smooth Muscle Cells. Circulation, 2018, 137, 1842-1845.	1.6	14
38	Application of MicroRNA in Cardiac and Skeletal Muscle Disease Gene Therapy. Methods in Molecular Biology, 2011, 709, 197-210.	0.9	10
39	Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic Control of SUZ12 Expression. Frontiers in Cardiovascular Medicine, 2022, 9, 852775.	2.4	10
40	Maintaining a conserved methylation in plant and insect U2 snRNA through compensatory mutation by nucleotide insertion. IUBMB Life, 2005, 57, 693-699.	3.4	9
41	Small Molecule Epigenetic Modulators in Pure Chemical Cell Fate Conversion. Stem Cells International, 2020, 2020, 1-12.	2.5	9
42	Inhibiting miR-22 Alleviates Cardiac Dysfunction by Regulating Sirt1 in Septic Cardiomyopathy. Frontiers in Cell and Developmental Biology, 2021, 9, 650666.	3.7	9
43	Circle the Cardiac Remodeling With circRNAs. Frontiers in Cardiovascular Medicine, 2021, 8, 702586.	2.4	7
44	Cardiac CIP protein regulates dystrophic cardiomyopathy. Molecular Therapy, 2021, , .	8.2	7
45	Deletion of miRNA-22 Induces Cardiac Hypertrophy in Females but Attenuates Obesogenic Diet-Mediated Metabolic Disorders Cellular Physiology and Biochemistry, 2020, 54, 1199-1217.	1.6	7
46	Prediction of Immune Infiltration Diagnostic Gene Biomarkers in Kawasaki Disease. Journal of Immunology Research, 2022, 2022, 1-16.	2.2	2
47	Identification and functional analysis of 23 novel box C/D snoRNAs from Oryza sativa. Science Bulletin, 2003, 48, 2077.	1.7	0
48	Response to Letter by Burgon. Circulation Research, 2012, 111, .	4.5	0
49	A Chromosomal Inversion of 46XX, inv (6) (p21.3p23) Connects to Congenital Heart Defects. Frontiers in Cardiovascular Medicine, 2020, 7, 121.	2.4	0
50	Identification of Novel Single-Nucleotide Variants With Potential of Mediating Malfunction of MicroRNA in Congenital Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 739598.	2.4	0
51	Abstract 919: Intercalated Disk Protein Xin-beta is Required for the Hippo/YAP Signaling in the Heart. Circulation Research, 2019, 125, .	4.5	0
52	Cardiac ISL1-Interacting Protein, a Cardioprotective Factor, Inhibits the Transition From Cardiac Hypertrophy to Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 857049.	2.4	0