G Murali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/983158/publications.pdf

Version: 2024-02-01

		687363	752698
19	720	13	20
papers	citations	h-index	20 g-index
21	21	21	720
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hematoporphyrin Photosensitizer-Linked Carbon Quantum Dots for Photodynamic Therapy of Cancer Cells. ACS Applied Nano Materials, 2022, 5, 4376-4385.	5.0	19
2	Ultraviolet–Ozone-Activation-Driven Ag Nanoparticles Grown on Plastic Substrates for Antibacterial Applications. ACS Applied Nano Materials, 2022, 5, 8767-8774.	5 . O	6
3	Light stimulated room-temperature H2S gas sensing ability of Cl-doped carbon quantum dots supported Ag nanoparticles. Carbon, 2022, 196, 337-346.	10.3	13
4	Stability and Degradation of MXene. Engineering Materials, 2022, , 87-107.	0.6	4
5	MXene-Integrated Metal Oxide Transparent Photovoltaics and Self-Powered Photodetectors. ACS Applied Energy Materials, 2022, 5, 7134-7143.	5.1	27
6	Tin Oxide/Nitrogen-Doped Graphene Quantum Dots Composite Nanotubes: An Efficient Electrode for Supercapacitors. Journal of Nanomaterials, 2022, 2022, 1-14.	2.7	2
7	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	6.1	19
8	Interaction activated interfacial charge transfer in 2D g-C3N4/GaN nanorods heterostructure for self-powered UV photodetector and room temperature NO2 gas sensor at ppb level. Sensors and Actuators B: Chemical, 2021, 329, 129175.	7.8	68
9	Engineering Aggregationâ€Resistant MXene Nanosheets As Highly Conductive and Stable Inks for Allâ€Printed Electronics. Advanced Functional Materials, 2021, 31, 2010897.	14.9	35
10	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34648-34657.	8.0	39
11	Recent Advances in Quantum Dots for Photocatalytic CO2 Reduction: A Mini-Review. Frontiers in Chemistry, 2021, 9, 734108.	3.6	20
12	Near-infrared-activated Z-scheme NaYF4:Yb/Tm@Ag3PO4/Ag@g-C3N4 photocatalyst for enhanced H2 evolution under simulated solar light irradiation. Chemical Engineering Journal, 2021, 421, 129687.	12.7	77
13	A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5672-5693.	4.9	55
14	GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. Journal of Alloys and Compounds, 2020, 813, 152251.	5 . 5	43
15	Enhancing the Charge Carrier Separation and Transport via Nitrogen-Doped Graphene Quantum Dot-TiO ₂ Nanoplate Hybrid Structure for an Efficient NO Gas Sensor. ACS Applied Materials & Dot-TiO (1988) Applied Materials & Dot-TiO (1988) Applied (1988) App	8.0	88
16	Ultrathin yttrium fluoride nanostructures: controlled synthesis and polarized up-conversion emission property. Journal of Materials Chemistry C, 2019, 7, 10918-10925.	5 . 5	7
17	p-Pheneylendiamine functionalized rGO/Si heterostructure Schottky junction for UV photodetectors. Diamond and Related Materials, 2019, 93, 208-215.	3.9	14
18	Nanocube In ₂ O ₃ @RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Advances, 2017, 7, 38714-38724.	3.6	90

#	ARTICLE	IF	CITATIONS
19	SnO ₂ quantum dots decorated on RGO: a superior sensitive, selective and reproducible performance for a H ₂ and LPG sensor. Nanoscale, 2015, 7, 11971-11979.	5.6	92