Vassiliki Papadimitriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9826866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress on nano-carriers fabrication for food applications with special reference to olive oil-based systems. Current Opinion in Food Science, 2022, 43, 146-154.	8.0	5
2	Development and Evaluation of Liposomal Nanoparticles Incorporating Dimethoxycurcumin. In vitro Toxicity and Permeability Studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129223.	4.7	3
3	Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119483.	3.9	5
4	Colloidal nanodispersions for the topical delivery of Ibuprofen: Structure, dynamics and bioperformances. Journal of Molecular Liquids, 2021, 334, 116021.	4.9	14
5	Biological Evaluation of Oil-in-Water Microemulsions as Carriers of Benzothiophene Analogues for Dermal Applications. Biomimetics, 2021, 6, 10.	3.3	3
6	Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect?. European Journal of Pharmaceutical Sciences, 2020, 142, 105135.	4.0	28
7	Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. Journal of Molecular Liquids, 2020, 301, 112479.	4.9	19
8	Development and Study of Nanoemulsions and Nanoemulsion-Based Hydrogels for the Encapsulation of Lipophilic Compounds. Nanomaterials, 2020, 10, 2464.	4.1	46
9	Physicochemical Characteristics of Four Limonene-Based Nanoemulsions and Their Larvicidal Properties against Two Mosquito Species, Aedes albopictus and Culex pipiens molestus. Insects, 2020, 11, 740.	2.2	19
10	Nanocarriers for effective drug delivery. , 2020, , 315-341.		5
11	Structure, activity and dynamics of extra virgin olive oil-in-water nanoemulsions loaded with vitamin D3 and calcium citrate. Journal of Molecular Liquids, 2020, 306, 112908.	4.9	23
12	Encapsulation of food ingredients by microemulsions. , 2019, , 129-149.		3
13	Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: The case of essential oils. Food Chemistry, 2019, 278, 415-423.	8.2	31
14	Reverse micelles as nanocarriers of nisin against foodborne pathogens. Food Chemistry, 2018, 255, 97-103.	8.2	21
15	Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators. Environmental Science and Pollution Research, 2018, 25, 10243-10249.	5.3	30
16	Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids and Surfaces B: Biointerfaces, 2018, 161, 219-227.	5.0	62
17	Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. Journal of Molecular Liquids, 2018, 272, 746-758.	4.9	20
18	Addendum: Oil-in-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination, Biomimetics 2018, 3, 13, Biomimetics, 2018, 3, 33,	3.3	1

#	Article	IF	CITATIONS
19	Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. Journal of Molecular Liquids, 2018, 268, 734-742.	4.9	95
20	Oil-In-Water Microemulsions as Hosts for Benzothiophene-Based Cytotoxic Compounds: An Effective Combination. Biomimetics, 2018, 3, 13.	3.3	6
21	Drug nanocarriers for cancer chemotherapy based on microemulsions: The case of Vemurafenib analog PLX4720. Colloids and Surfaces B: Biointerfaces, 2017, 154, 350-356.	5.0	34
22	Effect of oleic acid on the properties of protein adsorbed layers at water/oil interfaces: An EPR study combined with dynamic interfacial tension measurements. Colloids and Surfaces B: Biointerfaces, 2017, 158, 498-506.	5.0	13
23	Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. International Journal of Pharmaceutics, 2017, 529, 491-505.	5.2	44
24	Food grade water-in-oil microemulsions as replacement of oil phase to help process and stabilization of whipped cream. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 69-76.	4.7	15
25	Microemulsions as Potential Carriers of Nisin: Effect of Composition on Structure and Efficacy. Langmuir, 2016, 32, 8988-8998.	3.5	18
26	Melanin and humic acid-like polymer complex from olive mill waste waters. Part II. Surfactant properties and encapsulation in W/O microemulsions. Journal of Molecular Liquids, 2016, 222, 480-486.	4.9	9
27	Nanoencapsulated Lecitase Ultra and Thermomyces lanuginosus Lipase, a Comparative Structural Study. Langmuir, 2016, 32, 6746-6756.	3.5	10
28	Microemulsion versus emulsion as effective carrier of hydroxytyrosol. Colloids and Surfaces B: Biointerfaces, 2016, 137, 146-151.	5.0	27
29	Melanin and humic acid-like polymer complex from olive mill waste waters. Part I. Isolation and characterization. Food Chemistry, 2016, 203, 540-547.	8.2	12
30	Highly water dilutable microemulsions: a structural study. Colloid and Polymer Science, 2015, 293, 1111-1119.	2.1	18
31	Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 130-136.	4.7	74
32	Biocompatible Colloidal Dispersions as Potential Formulations of Natural Pyrethrins: A Structural and Efficacy Study. Langmuir, 2015, 31, 5722-5730.	3.5	39
33	Biocolloids Based on Amphiphilic Block Copolymers as a Medium for Enzyme Encapsulation. Journal of Physical Chemistry B, 2014, 118, 9808-9816.	2.6	16
34	Surfactant-rich biocompatible microemulsions as effective carriers of methylxanthine drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 80-87.	4.7	33
35	Structure and Dynamics of Veiled Virgin Olive Oil: Influence of Production Conditions and Relation to its Antioxidant Capacity. Food Biophysics, 2013, 8, 112-121.	3.0	24
36	Biocompatible nanodispersions as delivery systems of food additives: A structural study. Food Research International, 2013, 54, 1448-1454.	6.2	27

#	Article	IF	CITATIONS
37	Development and characterization of a digestion model based on olive oil microemulsions. European Journal of Lipid Science and Technology, 2013, 115, 601-611.	1.5	11
38	Influence of Nanoreactor Environment and Substrate Location on the Activity of Horseradish Peroxidase in Olive Oil Based Water-in-Oil Microemulsions. Langmuir, 2011, 27, 2692-2700.	3.5	15
39	Microemulsions based on virgin olive oil: A model biomimetic system for studying native oxidative enzymatic activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382, 232-237.	4.7	15
40	Characterization of cephalexin loaded nonionic microemulsions. Journal of Colloid and Interface Science, 2011, 361, 115-121.	9.4	41
41	Colloidal structures in natural oils. Current Opinion in Colloid and Interface Science, 2010, 15, 55-60.	7.4	69
42	Partial purification and characterization of peroxidase from olives (Olea europaea cv. Koroneiki). European Food Research and Technology, 2009, 228, 487-495.	3.3	21
43	Antioxidant Properties of Fruits and Vegetables Shots and Juices: An Electron Paramagnetic Resonance Study. Food Biophysics, 2008, 3, 48-53.	3.0	29
44	Oxidation of oleuropein studied by EPR and spectrophotometry. European Journal of Lipid Science and Technology, 2008, 110, 149-157.	1.5	9
45	Biocompatible Microemulsions Based on Limonene:  Formulation, Structure, and Applications. Langmuir, 2008, 24, 3380-3386.	3.5	69
46	Biocatalysis in Microemulsions. Surfactant Science, 2008, , .	0.0	3
47	Lecithin Organogels Used as Bioactive Compounds Carriers. A Microdomain Properties Investigation. Langmuir, 2007, 23, 4438-4447.	3.5	49
48	Olive Oil Microemulsions:Â Enzymatic Activities and Structural Characteristics. Langmuir, 2007, 23, 2071-2077.	3.5	55
49	Oxidative stability and radical scavenging activity of extra virgin olive oils: An electron paramagnetic resonance spectroscopy study. Analytica Chimica Acta, 2006, 573-574, 453-458.	5.4	71
50	Antioxidant activity of polar extracts from olive oil and olive mill wastewaters: an EPR and photometric study. European Journal of Lipid Science and Technology, 2005, 107, 513-520.	1.5	13
51	Olive oil microemulsions as a biomimetic medium for enzymatic studies: Oxidation of oleuropein. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 335-340.	1.9	15
52	EPR studies of proteolytic enzymes in microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 295-304.	4.7	14
53	Structural and catalytic aspects of cutinase in w/o microemulsions. Colloid and Polymer Science, 1997, 275, 609-616.	2.1	8
54	Proteolytic activity in various water-in-oil microemulsions as related to the polarity of the reaction medium. Colloids and Surfaces B: Biointerfaces, 1993, 1, 295-303.	5.0	23