J Miguel Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
2	Naturalâ€Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 2015, 27, 1143-1169.	11.1	743
3	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	5.7	411
4	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2010609.	7.8	370
5	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
6	Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.	2.1	291
7	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	4.1	276
8	Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e97-e107.	1.3	201
9	Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Frontiers in Bioengineering and Biotechnology, 2019, 7, 337.	2.0	186
10	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	9.4	173
11	Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science, 2010, 35, 1163-1194.	11.8	171
12	Could 3D models of cancer enhance drug screening?. Biomaterials, 2020, 232, 119744.	5.7	165
13	Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials, 2017, 149, 98-115.	5.7	155
14	Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Journal of Materials Science: Materials in Medicine, 2019, 30, 32.	1.7	150
15	Nanoparticles for bone tissue engineering. Biotechnology Progress, 2017, 33, 590-611.	1.3	149
16	Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Science Advances, 2019, 5, eaaw1317.	4.7	143
17	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	4.1	140
18	Emerging tumor spheroids technologies for 3D in vitro cancer modeling. , 2018, 184, 201-211.		133

#	Article	IF	CITATIONS
19	The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 2009, 30, 804-813.	5.7	131
20	The potential of hyaluronic acid in immunoprotection and immunomodulation: Chemistry, processing and function. Progress in Materials Science, 2018, 97, 97-122.	16.0	131
21	Recent progress in gellan gum hydrogels provided by functionalization strategies. Journal of Materials Chemistry B, 2016, 4, 6164-6174.	2.9	126
22	Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Current Opinion in Solid State and Materials Science, 2017, 21, 92-112.	5.6	126
23	Engineering bioinks for 3D bioprinting. Biofabrication, 2021, 13, 032001.	3.7	115
24	Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Materials Science and Engineering C, 2014, 43, 27-36.	3.8	110
25	Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomaterialia, 2018, 77, 155-171.	4.1	109
26	Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.	0.9	107
27	Tissue Engineering and Regenerative Medicine Strategies in Meniscus Lesions. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, 1706-1719.	1.3	100
28	Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models. Trends in Biotechnology, 2015, 33, 667-678.	4.9	99
29	Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomaterials Science and Engineering, 2017, 3, 3098-3122.	2.6	99
30	Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomaterials Research, 2017, 21, 22.	3.2	94
31	Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 2018, 72, 167-181.	4.1	93
32	Knee donor-site morbidity after mosaicplasty – a systematic review. Journal of Experimental Orthopaedics, 2016, 3, 31.	0.8	92
33	Microglia Response and In Vivo Therapeutic Potential of Methylprednisolone‣oaded Dendrimer Nanoparticles in Spinal Cord Injury. Small, 2013, 9, 738-749.	5.2	91
34	Biocompatibility Evaluation of Ionic―and Photoâ€Crosslinked Methacrylated Gellan Gum Hydrogels: In Vitro and In Vivo Study. Advanced Healthcare Materials, 2013, 2, 568-575.	3.9	91
35	Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells. Bioactive Materials, 2021, 6, 1375-1387.	8.6	90
36	Angiogenic Potential of Gellan-Gum-Based Hydrogels for Application in Nucleus Pulposus Regeneration: <i>In Vivo</i> Study. Tissue Engineering - Part A, 2012, 18, 1203-1212.	1.6	89

#	Article	IF	CITATIONS
37	Development of Gellan Gum-Based Microparticles/Hydrogel Matrices for Application in the Intervertebral Disc Regeneration. Tissue Engineering - Part C: Methods, 2011, 17, 961-972.	1.1	87
38	Scaffolds and coatings for bone regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 27.	1.7	86
39	Rheological and mechanical properties of acellular and cellâ€laden methacrylated gellan gum hydrogels. Journal of Biomedical Materials Research - Part A, 2013, 101, 3438-3446.	2.1	84
40	Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS Applied Materials & amp; Interfaces, 2019, 11, 3781-3799.	4.0	83
41	Dendrimer nanoparticles for colorectal cancer applications. Journal of Materials Chemistry B, 2020, 8, 1128-1138.	2.9	81
42	Biomechanical and cellular segmental characterization of human meniscus: building the basis for Tissue Engineering therapies. Osteoarthritis and Cartilage, 2014, 22, 1271-1281.	0.6	80
43	Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: State of the art and future trends. Applied Materials Today, 2018, 12, 51-71.	2.3	76
44	3D biosensors in advanced medical diagnostics of high mortality diseases. Biosensors and Bioelectronics, 2019, 130, 20-39.	5.3	76
45	Fast Setting Silk Fibroin Bioink for Bioprinting of Patientâ€Specific Memoryâ€Shape Implants. Advanced Healthcare Materials, 2017, 6, 1701021.	3.9	74
46	Management of knee osteoarthritis. Current status and future trends. Biotechnology and Bioengineering, 2017, 114, 717-739.	1.7	74
47	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	2.1	73
48	Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomaterials Science and Engineering, 2015, 1, 726-739.	2.6	73
49	Micro-CT – a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomaterials Research, 2018, 22, 26.	3.2	70
50	Basic science of osteoarthritis. Journal of Experimental Orthopaedics, 2016, 3, 22.	0.8	69
51	Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise-based approach. Journal of Experimental Orthopaedics, 2017, 4, 18.	0.8	69
52	The Meniscus in Normal and Osteoarthritic Tissues: Facing the Structure Property Challenges and Current Treatment Trends. Annual Review of Biomedical Engineering, 2019, 21, 495-521.	5.7	68
53	Nanotechnology in peripheral nerve repair and reconstruction. Advanced Drug Delivery Reviews, 2019, 148, 308-343.	6.6	66
54	Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS ONE, 2018, 13, e0194441.	1.1	65

#	Article	IF	CITATIONS
55	Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 1989-1999.	2.3	64
56	Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone, 2010, 46, 1424-1435.	1.4	63
57	Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnology Advances, 2013, 31, 1514-1531.	6.0	63
58	Hydrogels in acellular and cellular strategies for intervertebral disc regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 85-98.	1.3	62
59	Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports, 2016, 6, 31037.	1.6	62
60	Migration of "bioabsorbable―screws in ACL repair. How much do we know? A systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 986-994.	2.3	60
61	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	1.7	60
62	Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 671-678.	2.3	59
63	Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 897-908.	1.7	59
64	Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomaterials Science and Engineering, 2015, 1, 183-200.	2.6	58
65	Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting, 2016, 1-2, 1-10.	2.9	58
66	Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 2021, 123, 51-71.	4.1	58
67	Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Research, 2018, 11, 4489-4506.	5.8	57
68	Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.	7.8	56
69	Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. Journal of the Royal Society Interface, 2014, 11, 20130784.	1.5	55
70	Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models. Stem Cell Reviews and Reports, 2017, 13, 347-363.	5.6	52
71	Hydrogels for nucleus replacement—Facing the biomechanical challenge. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 67-77.	1.5	51
72	Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. Npj Regenerative Medicine, 2018, 3, 8.	2.5	51

#	Article	IF	CITATIONS
73	Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomaterialia, 2019, 93, 74-85.	4.1	51
74	Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS Applied Materials & Interfaces, 2019, 11, 14548-14559.	4.0	51
75	Gellan gumâ€hydroxyapatite composite spongyâ€like hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	2.1	50
76	Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92-106.	5.7	48
77	METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cellular and Molecular Life Sciences, 2022, 79, 135.	2.4	47
78	Gellan Gum-Based Hydrogel Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Engineering Materials, 2013, 587, 255-260.	0.4	46
79	Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement. Biofabrication, 2015, 7, 015008.	3.7	46
80	In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. Journal of Biotechnology, 2007, 132, 218-226.	1.9	45
81	Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic―electroless coprecipitation route. Journal of Biomedical Materials Research - Part A, 2009, 88A, 470-480.	2.1	45
82	Galactooligosaccharides production by β-galactosidase immobilized onto magnetic polysiloxane–polyaniline particles. Reactive and Functional Polymers, 2009, 69, 246-251.	2.0	45
83	Bioceramics for Osteochondral Tissue Engineering and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 53-75.	0.8	45
84	Biochemical Gradients to Generate 3D Heterotypic‣ike Tissues with Isotropic and Anisotropic Architectures. Advanced Functional Materials, 2018, 28, 1804148.	7.8	45
85	Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Advances, 2015, 5, 77996-78005.	1.7	44
86	Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 2175-2185.	2.6	44
87	Meniscal allograft transplants and new scaffolding techniques. EFORT Open Reviews, 2019, 4, 279-295.	1.8	43
88	<i>In Vivo</i> Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds. Tissue Engineering - Part A, 2013, 19, 860-869.	1.6	42
89	Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Materials Science and Engineering C, 2017, 71, 1122-1134.	3.8	42
90	Hyaluronic Acid. Advances in Experimental Medicine and Biology, 2018, 1059, 137-153.	0.8	42

#	Article	IF	CITATIONS
91	Recent approaches towards bone tissue engineering. Bone, 2022, 154, 116256.	1.4	42
92	Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 637-648.	1.3	41
93	Silk Fibroin-Based Scaffold for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1077, 371-387.	0.8	41
94	Exosome mediated transfer of miRNAâ€140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. Journal of Cellular Biochemistry, 2020, 121, 3642-3652.	1.2	41
95	3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials, 2020, 32, 8733-8746.	3.2	40
96	Amperometric Glucose Biosensor Based on Assisted Ion Transfer through Gel-Supported Microinterfaces. Analytical Chemistry, 2004, 76, 5547-5551.	3.2	39
97	Development of nanofiberâ€reinforced hydrogel scaffolds for nucleus pulposus regeneration by a combination of electrospinning and spraying technique. Journal of Applied Polymer Science, 2013, 128, 1158-1163.	1.3	39
98	In vivo biofunctional evaluation of hydrogels for disc regeneration. European Spine Journal, 2014, 23, 19-26.	1.0	39
99	Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045002.	1.7	38
100	Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.	2.3	38
101	Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1136-1142.	2.3	37
102	Arthroscopic Repair of Ankle Instability With All-Soft Knotless Anchors. Arthroscopy Techniques, 2016, 5, e99-e107.	0.5	37
103	<i>In vitro</i> and <i>in vivo</i> performance of methacrylated gellan gum hydrogel formulations for cartilage repair*. Journal of Biomedical Materials Research - Part A, 2018, 106, 1987-1996.	2.1	37
104	Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Applied Bio Materials, 2021, 4, 2941-2956.	2.3	37
105	Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding. Cells Tissues Organs, 2017, 204, 150-163.	1.3	37
106	Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Materials Today Communications, 2019, 19, 506-512.	0.9	36
107	Advanced Biomaterials and Processing Methods for Liver Regeneration: Stateâ€ofâ€theâ€Art and Future Trends. Advanced Healthcare Materials, 2020, 9, e1901435.	3.9	36
108	Novel poly(<scp>L</scp> â€lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research - Part A, 2010, 94A, 856-869.	2.1	35

#	Article	IF	CITATIONS
109	Prevalence of Articular Cartilage Lesions and Surgical Clinical Outcomes in Football (Soccer) Players' Knees: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2016, 32, 1466-1477.	1.3	35
110	In vivo study of dendronlike nanoparticles for stem cells "tune-up― from nano to tissues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 914-924.	1.7	34
111	Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin. Scientific Reports, 2016, 6, 39191.	1.6	34
112	Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part II: treatment options. Journal of Experimental Orthopaedics, 2018, 5, 38.	0.8	34
113	Gellan Gum-based luminal fillers for peripheral nerve regeneration: an <i>in vivo</i> study in the rat sciatic nerve repair model. Biomaterials Science, 2018, 6, 1059-1075.	2.6	33
114	Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials, 2018, 181, 402-414.	5.7	33
115	Tissue Engineering Strategies for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1059, 353-371.	0.8	33
116	Peptideâ€Modified Dendrimer Nanoparticles for Targeted Therapy of Colorectal Cancer. Advanced Therapeutics, 2019, 2, 1900132.	1.6	33
117	Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomaterials Science, 2019, 7, 5451-5466.	2.6	33
118	Tunable Enzymatically Crossâ€Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1800186.	3.9	32
119	Engineering Silk Fibroinâ€Based Nerve Conduit with Neurotrophic Factors for Proximal Protection after Peripheral Nerve Injury. Advanced Healthcare Materials, 2021, 10, e2000753.	3.9	32
120	Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters, 2007, 61, 3495-3499.	1.3	31
121	Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 265-275.	1.3	31
122	Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103516.	1.5	31
123	Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055030.	1.7	31
124	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
125	Multifunctionalized CMCht/PAMAM Dendrimer Nanoparticles Modulate the Cellular Uptake by Astrocytes and Oligodendrocytes in Primary Cultures of Glial Cells. Macromolecular Bioscience, 2012, 12, 591-597.	2.1	29
126	De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. Journal of Bioactive and Compatible Polymers, 2013, 28, 439-452.	0.8	29

#	Article	IF	CITATIONS
127	Optical projection tomography as a tool for 3D imaging of hydrogels. Biomedical Optics Express, 2014, 5, 3443.	1.5	29
128	Stimuli responsive UV cured polyurethane acrylated/carbon nanotube composites for piezoresistive sensing. European Polymer Journal, 2019, 120, 109226.	2.6	29
129	Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Journal of Materials Science: Materials in Medicine, 2019, 30, 63.	1.7	29
130	Comparison between calcium carbonate and βâ€ŧricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 272-283.	1.3	29
131	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	0.8	28
132	Orthopaedic regenerative tissue engineering en route to the holy grail: disequilibrium between the demand and the supply in the operating room. Journal of Experimental Orthopaedics, 2018, 5, 14.	0.8	28
133	Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 305-325.	0.8	27
134	Biological performance of a promising Kefiran-biopolymer with potential in regenerative medicine applications: a comparative study with hyaluronic acid. Journal of Materials Science: Materials in Medicine, 2018, 29, 124.	1.7	27
135	Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications. Materials Today Communications, 2019, 20, 100554.	0.9	27
136	Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step. Journal of Materials Science: Materials in Medicine, 2017, 28, 129.	1.7	26
137	Incorporation of resident macrophages in engineered tissues: Multiple cell type response to microenvironment controlled macrophage″aden gelatine hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 330-340.	1.3	26
138	Kefiran biopolymer: Evaluation of its physicochemical and biological properties. Journal of Bioactive and Compatible Polymers, 2018, 33, 461-478.	0.8	26
139	Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomaterialia, 2019, 95, 60-72.	4.1	26
140	Anti-Inflammatory Properties of Injectable Betamethasone-Loaded Tyramine-Modified Gellan Gum/Silk Fibroin Hydrogels. Biomolecules, 2020, 10, 1456.	1.8	26
141	Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment. Drug Delivery and Translational Research, 2021, 11, 1288-1300.	3.0	26
142	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	2.1	25
143	In vitroevaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. , 2015, 103, 888-898.		25
144	Gellan Gum-Based Hydrogels for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1058, 281-304.	0.8	25

#	Article	IF	CITATIONS
145	Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 173-201.	0.8	25
146	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
147	Optical Projection Tomography Technique for Image Texture and Mass Transport Studies in Hydrogels Based on Gellan Gum. Langmuir, 2016, 32, 5173-5182.	1.6	24
148	Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3168-3177.	1.3	24
149	Tuning Enzymatically Crosslinked Silk Fibroin Hydrogel Properties for the Development of a Colorectal Cancer Extravasation 3D Model on a Chip. Global Challenges, 2018, 2, 1700100.	1.8	24
150	Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration. Nanomaterials, 2018, 8, 290.	1.9	24
151	Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials, 2019, 12, 2074.	1.3	24
152	Silk fibroin promotes mineralization of gellan gum hydrogels. International Journal of Biological Macromolecules, 2020, 153, 1328-1334.	3.6	24
153	Mimicking the 3D biology of osteochondral tissue with microfluidic-based solutions: breakthroughs towards boosting drug testing and discovery. Drug Discovery Today, 2018, 23, 711-718.	3.2	23
154	A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomaterialia, 2019, 90, 146-156.	4.1	23
155	Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds. Bio-Design and Manufacturing, 2018, 1, 69-75.	3.9	22
156	Silk Fibroin/Nano-CaP Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Engineering Materials, 0, 587, 245-248.	0.4	21
157	Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. Journal of Materials Chemistry B, 2020, 8, 5928-5937.	2.9	21
158	PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Materials Science and Engineering C, 2021, 121, 111845.	3.8	21
159	Mead production: effect of nitrogen supplementation on growth, fermentation profile and aroma formation by yeasts in mead fermentation. Journal of the Institute of Brewing, 2015, 121, 122-128.	0.8	20
160	Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1844-1852.	1.3	20
161	Cartilage Restoration of Patellofemoral Lesions: A Systematic Review. Cartilage, 2021, 13, 57S-73S.	1.4	20
162	Hydrogels in the treatment of rheumatoid arthritis: drug delivery systems and artificial matrices for dynamic in vitro models. Journal of Materials Science: Materials in Medicine, 2021, 32, 74.	1.7	20

#	Article	IF	CITATIONS
163	Bonelike�/PLGA hybrid materials for bone regeneration: Preparation route and physicochemical characterisation. Journal of Materials Science: Materials in Medicine, 2005, 16, 253-259.	1.7	19
164	In vivo biodistribution of carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in rats. Journal of Bioactive and Compatible Polymers, 2011, 26, 619-627.	0.8	19
165	Natural Polymers in Tissue Engineering Applications. , 2013, , 385-425.		19
166	A semiautomated microfluidic platform for real-time investigation of nanoparticles' cellular uptake and cancer cells' tracking. Nanomedicine, 2017, 12, 581-596.	1.7	19
167	Antiâ€angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e669-e678.	1.3	19
168	Peptide-biofunctionalization of biomaterials for osteochondral tissue regeneration in early stage osteoarthritis: challenges and opportunities. Journal of Materials Chemistry B, 2019, 7, 1027-1044.	2.9	19
169	Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 035012.	1.7	18
170	Innovative methodology for marine collagen–chitosan–fucoidan hydrogels production, tailoring rheological properties towards biomedical application. Green Chemistry, 2021, 23, 7016-7029.	4.6	18
171	Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives. Regenerative Engineering and Translational Medicine, 2017, 3, 32-50.	1.6	17
172	Small Animal Models. Advances in Experimental Medicine and Biology, 2018, 1059, 423-439.	0.8	17
173	Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication, 2020, 12, 025028.	3.7	17
174	Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 2021, 9, 4211-4218.	2.9	17
175	Physicochemical properties and cytocompatibility assessment of non-degradable scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 103997.	1.5	17
176	Global rotation has high sensitivity in ACL lesions within stress MRI. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 2993-3003.	2.3	16
177	Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration. Journal of Materials Science: Materials in Medicine, 2019, 30, 27.	1.7	16
178	The Meniscus: Basic Science. , 2013, , 7-14.		15
179	The uptake, retention and clearance of drug-loaded dendrimer nanoparticles in astrocytes – electrophysiological quantification. Biomaterials Science, 2018, 6, 388-397.	2.6	15
180	Osteogenesis evaluation of duck's feet-derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomaterials Research, 2017, 21, 2.	3.2	14

#	Article	IF	CITATIONS
181	Stem Cells for Osteochondral Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 219-240.	0.8	14
182	Chitosan Improves the Biological Performance of Soy-Based Biomaterials. Tissue Engineering - Part A, 2010, 16, 2883-2890.	1.6	13
183	Commercial Products for Osteochondral Tissue Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 415-428.	0.8	13
184	Biomaterials Developments for Brain Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 323-346.	0.8	13
185	PRP Therapy. Advances in Experimental Medicine and Biology, 2018, 1059, 241-253.	0.8	13
186	Bioengineered Nanoparticles Loaded-Hydrogels to Target TNF Alpha in Inflammatory Diseases. Pharmaceutics, 2021, 13, 1111.	2.0	13
187	Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. Journal of Materials Chemistry B, 2021, 9, 9561-9574.	2.9	13
188	Osteogenic lithium-doped brushite cements for bone regeneration. Bioactive Materials, 2022, 16, 403-417.	8.6	13
189	Bioreactors and Microfluidics for Osteochondral Interface Maturation. Advances in Experimental Medicine and Biology, 2018, 1059, 395-420.	0.8	12
190	Emerging Concepts in Treating Cartilage, Osteochondral Defects, and Osteoarthritis of theÂKnee and Ankle. Advances in Experimental Medicine and Biology, 2018, 1059, 25-62.	0.8	12
191	Natural Origin Materials for Bone Tissue Engineering. , 2019, , 535-558.		12
192	The Clinical Use of Biologics in the Knee Lesions: Does the Patient Benefit?. Current Reviews in Musculoskeletal Medicine, 2019, 12, 406-414.	1.3	12
193	Ionic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustainable Chemistry and Engineering, 2020, 8, 3986-3994.	3.2	12
194	Hierarchical HRP-Crosslinked Silk Fibroin/ZnSr-TCP Scaffolds for Osteochondral Tissue Regeneration: Assessment of the Mechanical and Antibacterial Properties. Frontiers in Materials, 2020, 7, .	1.2	12
195	Towards the Development of a Female Animal Model of T1DM Using Hyaluronic Acid Nanocoated Cell Transplantation: Refinements and Considerations for Future Protocols. Pharmaceutics, 2021, 13, 1925.	2.0	12
196	Meniscal Repair: Indications, Techniques, and Outcome. , 2016, , 125-142.		11
197	Scavenging Nanoreactors that Modulate Inflammation. Advanced Biology, 2018, 2, 1800086.	3.0	11
198	Promising Biomolecules. Advances in Experimental Medicine and Biology, 2018, 1059, 189-205.	0.8	11

#	Article	IF	CITATIONS
199	Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102139.	1.7	11
200	Current and future trends of silk fibroin-based bioinks in 3D printing. Journal of 3D Printing in Medicine, 2020, 4, 69-73.	1.0	11
201	Tumor-Stroma Interactions Alter the Sensitivity of Drug in Breast Cancer. Frontiers in Materials, 2020, 7, .	1.2	11
202	Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discovery Today, 2021, 26, 754-768.	3.2	11
203	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	1.4	11
204	Advanced Regenerative Strategies for Human Knee Meniscus. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 271-285.	0.7	10
205	Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. Journal of Materials Science: Materials in Medicine, 2018, 29, 21.	1.7	10
206	Clinical Trials and Management of Osteochondral Lesions. Advances in Experimental Medicine and Biology, 2018, 1058, 391-413.	0.8	10
207	In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 373-394.	0.8	10
208	Microfluidics for Angiogenesis Research. Advances in Experimental Medicine and Biology, 2020, 1230, 97-119.	0.8	10
209	Future Trends in the Treatment of Meniscus Lesions: From Repair to Regeneration. , 2013, , 103-112.		10
210	Preparation of Bioactive Coatings on the Surface of Bioinert Polymers through an Innovative Auto-Catalytic Electroless Route. Key Engineering Materials, 2005, 284-286, 203-206.	0.4	9
211	Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 385-397.	0.8	9
212	Detection of Foodborne Pathogens Using Nanoparticles. Advantages and Trends. , 2016, , 183-201.		9
213	Layered Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 193-218.	0.8	9
214	Decellularized hASCs-derived matrices as biomaterials for 3D in vitro approaches. Methods in Cell Biology, 2020, 156, 45-58.	0.5	9
215	Horseradish Peroxidaseâ€Crosslinked Calciumâ€Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research. Macromolecular Bioscience, 2021, 21, e2000425.	2.1	9
216	Conotoxin loaded dextran microgel particles alleviate effects of spinal cord injury by inhibiting neuronal excitotoxicity. Applied Materials Today, 2021, 23, 101064.	2.3	9

#	Article	IF	CITATIONS
217	Two in One: Use of Divalent Manganese Ions as Both Cross-Linking and MRI Contrast Agent for Intrathecal Injection of Hydrogel-Embedded Stem Cells. Pharmaceutics, 2021, 13, 1076.	2.0	9
218	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	2.0	9
219	Innovative Technique for the Preparation of Porous Bilayer Hydroxyapatite/Chitosan Scaffolds for Osteochondral Applications. Key Engineering Materials, 2006, 309-311, 927-930.	0.4	8
220	In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
221	Silk-Fibroin/Methacrylated Gellan Gum Hydrogel As An Novel Scaffold For Application In Meniscus Cell-Based Tissue Engineering. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, e53-e55.	1.3	8
222	Tissue Engineering and Regenerative Medicine Strategies for the Treatment of Osteochondral Lesions. , 2014, , 25-47.		8
223	Histology-Ultrastructure-Biology. , 2016, , 23-33.		8
224	Good clinical outcome after osteochondral autologous transplantation surgery for osteochondral lesions of the talus but at the cost of a high rate of complications: a systematic review. Journal of ISAKOS, 2016, 1, 184-191.	1.1	8
225	Meniscal Lesions: From Basic Science to Clinical Management in Footballers. , 2017, , 145-163.		8
226	Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering. Bio-Design and Manufacturing, 2019, 2, 225-241.	3.9	8
227	Advances on gradient scaffolds for osteochondral tissue engineering. Progress in Biomedical Engineering, 2021, 3, 033001.	2.8	8
228	Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1966-1982.	1.9	8
229	Methacrylated Gellan Gum/Poly- <scp>l</scp> -lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomaterials Science and Engineering, 2021, 7, 4898-4913.	2.6	8
230	Biomaterials and Microfluidics for Drug Discovery and Development. Advances in Experimental Medicine and Biology, 2020, 1230, 121-135.	0.8	8
231	Cytocompatible manganese dioxide-based hydrogel nanoreactors for MRI imaging. Materials Science and Engineering C, 2022, 134, 112575.	3.8	8
232	Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine, 2022, 17, 477-494.	1.7	8
233	Emerging scaffold- and cellular-based strategies for brain tissue regeneration and imaging. In Vitro Models, 2022, 1, 129-150.	1.0	8
234	Natural Origin Materials for Bone Tissue Engineering – Properties, Processing, and Performance. , 2011, , 557-586.		7

#	Article	IF	CITATIONS
235	Mosaicplasty Using Grafts From the Upper Tibiofibular Joint. Arthroscopy Techniques, 2017, 6, e1979-e1987.	0.5	7
236	Basics of the Meniscus. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 237-247.	0.7	7
237	Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications. Polymers, 2021, 13, 1342.	2.0	7
238	Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. Materials Science and Engineering C, 2021, 129, 112413.	3.8	7
239	Building the Basis for Patient-Specific Meniscal Scaffolds. , 2017, , 411-418.		7
240	Engineering of Extracellular Matrixâ€Like Biomaterials at Nano―and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. Advanced NanoBiomed Research, 2022, 2, 2100116.	1.7	7
241	Tissue engineering using natural polymers. , 2007, , 197-217.		6
242	The Role of Arthroscopy in the Treatment of Degenerative Meniscus Tear. , 2016, , 107-117.		6
243	Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1949-1962.	1.3	6
244	"Biologic―Treatment for Meniscal Repair. , 2017, , 679-686.		6
245	Tissue engineering in orthopaedic sports medicine: current concepts. Journal of ISAKOS, 2017, 2, 60-66.	1.1	6
246	Nanoparticles-Based Systems for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1059, 209-217.	0.8	6
247	Recent advances on 3D printing of patient-specific implants for fibrocartilage tissue regeneration. Journal of 3D Printing in Medicine, 2018, 2, 129-140.	1.0	6
248	Tissue engineering scaffolds. , 2019, , 165-185.		6
249	Fabrication of biocompatible porous SAIB/silk fibroin scaffolds using ionic liquids. Materials Chemistry Frontiers, 2021, 5, 6582-6591.	3.2	6
250	Cartilage and Bone Regeneration—How Close Are We to Bedside?. , 2016, , 89-106.		5
251	Osteochondral Tissue Engineering and Regenerative Strategies. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 213-233.	0.7	5
252	Biomaterials in Meniscus Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 249-270.	0.7	5

#	Article	IF	CITATIONS
253	Pre-clinical and Clinical Management of Osteochondral Lesions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 147-161.	0.7	5
254	Supporting shared hypothesis testing in the biomedical domain. Journal of Biomedical Semantics, 2018, 9, 9.	0.9	5
255	Dendrimers: Breaking the paradigm of current musculoskeletal autoimmune therapies. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1796-e1812.	1.3	5
256	Current advances in solid free-form techniques for osteochondral tissue engineering. Bio-Design and Manufacturing, 2018, 1, 171-181.	3.9	5
257	PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 719192.	1.8	5
258	Manganese-Labeled Alginate Hydrogels for Image-Guided Cell Transplantation. International Journal of Molecular Sciences, 2022, 23, 2465.	1.8	5
259	Clinical Management of Articular Cartilage Lesions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 29-53.	0.7	4
260	Bovine Colostrum Supplementation Improves Bone Metabolism in an Osteoporosis-Induced Animal Model. Nutrients, 2021, 13, 2981.	1.7	4
261	Nanoparticles and Microfluidic Devices in Cancer Research. Advances in Experimental Medicine and Biology, 2020, 1230, 161-171.	0.8	4
262	Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing. Advances in Experimental Medicine and Biology, 2020, 1230, 137-159.	0.8	4
263	Human Meniscus: From Biology to Tissue Engineering Strategies. , 2015, , 1089-1102.		4
264	Human Meniscus: From Biology to Tissue Engineering Strategies. , 2013, , 1-16.		4
265	A Design of Experiments (DoE) Approach to Optimize Cryogel Manufacturing for Tissue Engineering Applications. Polymers, 2022, 14, 2026.	2.0	4
266	443 CELLULAR AND BIOMECHANICAL SEGMENTAL CHARACTERIZATION OF HUMAN MENISCUS. Osteoarthritis and Cartilage, 2011, 19, S205.	0.6	3
267	ACL Injuries Identifiable for Pre-participation Imagiological Analysis: Risk Factors. , 2013, , 1-15.		3
268	Biomimetic Strategies to Engineer Mineralized Human Tissues. , 2016, , 503-519.		3
269	MRI Laxity Assessment. , 2017, , 49-61.		3
270	Advances for Treatment of Knee OC Defects. Advances in Experimental Medicine and Biology, 2018, 1059, 3-24.	0.8	3

#	Article	IF	CITATIONS
271	Biomaterials as ECM-like matrices for 3D in vitro tumor models. , 2020, , 157-173.		3
272	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	2.3	3
273	Biomaterials and Microfluidics for Liver Models. Advances in Experimental Medicine and Biology, 2020, 1230, 65-86.	0.8	3
274	adipoSIGHT in Therapeutic Response: Consequences in Osteosarcoma Treatment. Bioengineering, 2021, 8, 83.	1.6	3
275	An efficient and userâ€friendly method for cytohistological analysis of organoids. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 1012-1022.	1.3	3
276	Systematic Approach from Porto School. , 2014, , 367-386.		3
277	Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells. Scientific Reports, 2021, 11, 19894.	1.6	3
278	Editorial: Silk-Based Functional Biomaterials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 721761.	2.0	3
279	Biocomposites and Bioceramics in Tissue Engineering: Beyond the Next Decade. Springer Series in Biomaterials Science and Engineering, 2022, , 319-350.	0.7	3
280	Macromolecular modulation of a 3D hydrogel construct differentially regulates human stem cell tissue-to-tissue interface. Materials Science and Engineering C, 2021, , 112611.	3.8	3
281	Physiopathology of the Meniscal Lesions. , 2016, , 47-61.		2
282	Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146.	0.7	2
283	Return to Play Following Cartilage Injuries. , 2018, , 593-610.		2
284	An Advanced Device for Multiplanar Instability Assessment in MRI. , 2019, , 27-33.		2
285	3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. Biomaterials, 2021, 277, 121112.	5.7	2
286	Peroneal and Posterior Tibial Tendon Pathology. Sports Et Traumatologie, 2014, , 235-251.	0.0	2
287	Microfluidic Devices and Three Dimensional-Printing Strategies for in vitro Models of Bone. Advances in Experimental Medicine and Biology, 2020, 1230, 1-14.	0.8	2
288	Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication, 2022, 14, 025022.	3.7	2

#	Article	IF	CITATIONS
289	Integration of polyurethane meniscus scaffold during ACL revision is not reliable at 5Âyears despite favourable clinical outcome. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 3422-3427.	2.3	2
290	Forecast cancer: the importance of biomimetic 3D in vitro models in cancer drug testing/discovery and therapy. In Vitro Models, 2022, 1, 119-123.	1.0	2
291	Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients, 2022, 14, 2837.	1.7	2
292	In Vivo Behaviour of Bonelike [®] /PLGA Hybrid: Histological Analysis and Peripheral Quantitative Computed Tomography (pQ-CT) Evaluation. Key Engineering Materials, 2004, 254-256, 565-568.	0.4	1
293	Bonelike [®] /PLGA Hybrid Materials for Bone Regeneration: In Vivo Evaluation. Materials Science Forum, 2004, 455-456, 374-377.	0.3	1
294	Carboxymethylchitosan/Calcium Phosphate Hybrid Materials Prepared by an Innovative Auto-Catalytic Co-Precipitation Method. Key Engineering Materials, 2005, 284-286, 701-704.	0.4	1
295	A Semantically Adaptable Integrated Visualization and Natural Exploration of Multi-scale Biomedical Data. , 2015, , .		1
296	Fundamentals on Injuries of Knee Ligaments in Footballers. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 289-321.	0.7	1
297	Cartilage Tissue Engineering and Regenerative Strategies. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 73-96.	0.7	1
298	Synovial Knee Joint. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 21-28.	0.7	1
299	Return to Play in Stress Fractures of theÂHip, Thigh, Knee, and Leg. , 2018, , 409-427.		1
300	Synthesis of mussel-inspired polydopamine-gallium nanoparticles for biomedical applications. Nanomedicine, 2021, 16, 5-17.	1.7	1
301	Protocol of Osteogenesis from BMSC Cultured with Dexamethasone-Loaded Dendrimer Nanoparticles onto Ceramic and Polymeric Scaffolds: In Vivo Studies. Manuals in Biomedical Research, 2014, , 67-74.	0.0	1
302	Gellan-gum coated gold nanorods: A new tool for biomedical applications. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	1
303	Deep learning in bioengineering and biofabrication: a powerful technology boosting translation from research to clinics. Journal of 3D Printing in Medicine, 0, , .	1.0	1
304	Tissue engineering and regenerative medicine research - how can it contribute to fight future pandemics?. , 2020, , 389-416.		1
305	A Microfludic Platform as An In Vitro Model for Biomedical Experimentation - A Cell Migration Study. , 2021, , .		1
306	Engineering of Viscosupplement Biomaterials for Treatment of Osteoarthritis: A Comprehensive Review. Advanced Engineering Materials, 0, , 2101541.	1.6	1

ARTICLE IF CITATIONS Combined application of Silk-fibroin/methacrylated gellan gum hydrogel in tissue engineering approaches for partial and/or total meniscus replacement while enabling control of neovascularization. Revue De Chirurgie Orthopedique Et Traumatologique, 2013, 99, e18-e19. Biomimetic Strategies to Engineer Mineralised Human Tissues., 2015, , 1-14. 308 0 Allografts in Posterior Cruciate Ligament Reconstructions., 2015, , 861-872. Anterior Cruciate Ligament Injuries Identifiable for Pre-participation Imagiological Analysis: Risk 310 0 Factors., 2015, , 1525-1536. Tibialis Posterior and Anterior Tendons., 2017,, 355-372. 311 312 Cell Culture Methods. , 2017, , 619-635. 0 Advances in Biomaterials for the Treatment of Articular Cartilage Defects. Studies in 0.7 Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 97-126. Injectable Polymeric System Based on Polysaccharides for Therapy., 2021, , 1-18. 314 0 Kefiran in Tissue Engineering and Regenerative Medicine., 2021, , 1-21. 316 Dendrimers in tissue engineering., 2021, , 327-336. 0 Nonbiological Adjuncts for Ankle Stabilization., 2021, , 357-363. 318 Sulfation of Microbial Polysaccharides., 2021, , 1-18. 0 Glycosaminoglycans., 2021, , 1-18. Behaviour of Micro-Fabricated Composite Membrane as Amperometric Glucose Biosensor., 2003,, 320 0 365-370. Allografts in PCL Reconstructions., 2013, , 1-13. ACL Two-Stage Revision Surgery: Practical Guide., 2014, , 407-417. 322 0 Head, Low-Back and Muscle Injuries in Athletes: PRP and Stem Cells in Sports-Related Diseases. , 2014, , 273-311. Comparison of bilayered structures of gellan gum with and without incorporation of gold nanorods 324 2.0 0 for osteochondral tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 4, .

#	Article	IF	CITATIONS
325	Chitosan films with varying degrees of acetylation for application in peripheral nerve regeneration. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
326	Investigation of Dendrimer-based nanoparticles cellular uptake and cell tracking in a semi-automated microfluidic platform. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0
327	Hyaluronic Acid, PRP/Growth Factors, and Stem Cells in the Treatment of Osteochondral Lesions. , 2017, , 659-677.		0
328	Materials for Cell Delivery in Degenerated Intervertebral Disc. , 2018, , 137-153.		0
329	Welcome to In vitro models. In Vitro Models, 0, , 1.	1.0	0
330	Nanoparticles for Bone Tissue Engineering. , 2020, , 9-1-9-14.		0
331	Diagnosis of Cartilage and Osteochondral Defect. , 2022, , 95-106.		0
332	Natural polymeric biomaterials for tissue engineering. , 2022, , 75-110.		0
333	ENGINEERING A MICROFLUDIC PLATFORM AS A PRE-CLINICAL MODEL FOR BIOMEDICAL APPLICATIONS. , 2021, , .		0
334	Kefiran in Tissue Engineering and Regenerative Medicine. , 2022, , 975-995.		0
335	Chitosan-Based Gels for Regenerative Medicine Applications. , 2022, , 1247-1271.		0
336	Sulfation of Microbial Polysaccharides. , 2022, , 675-692.		0
337	Injectable Polymeric System Based on Polysaccharides for Therapy. , 2022, , 1045-1062.		0
338	Glycosaminoglycans. , 2022, , 167-184.		0
339	BAMOS project: osteochondral scaffold innovation applied to osteoarthritis. In Vitro Models, 0, , .	1.0	0
340	Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. In Vitro Models, 0, , .	1.0	0