Iryna Mineyeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9823719/publications.pdf

Version: 2024-02-01

	1163117	1125743
196	8	13
citations	h-index	g-index
30	30	57
docs citations	times ranked	citing authors
	citations 30	196 8 citations h-index 30 30

#	Article	IF	CITATIONS
1	New 1,4-Dihydropyridines. Optimization of the Synthesis and In Silico Analysis of Biological Activity. Russian Journal of Organic Chemistry, 2022, 58, 268-281.	0.8	1
2	Diastereoselective Allylation of \hat{l}_{\pm} -Hydroxy Schiff Bases with 2-Substituted Functionalized Allyl Bromides. Russian Journal of Organic Chemistry, 2021, 57, 1435-1447.	0.8	0
3	Synthesis of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes with an (E)-Trisubstituted Double Bond via Ring Opening of Cyclopropanols. Russian Journal of Organic Chemistry, 2021, 57, 1563-1574.	0.8	1
4	Methyl 3-(Bromomethyl)but-3-enoate and Methyl 3-[(Tributylstannyl)methyl]but-3-enoate in Azomethine Allylation Reactions. Russian Journal of Organic Chemistry, 2020, 56, 1327-1335.	0.8	1
5	Synthesis of the Mealworm Tenebrio molitor L. Pheromone. Russian Journal of Organic Chemistry, 2020, 56, 994-1000.	0.8	3
6	Allylation of (R)-2,3-O-Cyclohexylideneglyceraldehyde with Methyl 3-(Bromomethyl)but-3-enoate. Methyl 3-{(2S)-2-[(2R)-1,4-Dioxaspiro[4.5]dec-2-yl]-2-hydroxyethyl}but-3-enoate as a Convenient Universal Building Block for the Synthesis of Key Fragments of Bioactive Compounds. Russian Journal of Organic Chemistry, 2019, 55, 1112-1123.	0.8	3
7	Functionalized 2-Substituted Allyl Bromides in the Barbier Allylation of (R)-2,3-O-Isopropylideneglyceraldehyde. Synthesis of the C8–C17, C8–C18, and C5–C17 Building Blocks of Laulimalides and Their Synthetic Analogs. Russian Journal of Organic Chemistry, 2019, 55, 530-539.	0.8	2
8	Synthesis of (2S)-4-Methyl- and (2S)-4-Methyl-6-oxo-3,6-dihydro-2H-pyran-2-carbaldehydes as Precursors to C22–C27 Fragments of Fijianolides and Their Synthetic Analogs. Russian Journal of Organic Chemistry, 2018, 54, 1341-1349.	0.8	3
9	New 2-substituted functionalized allyl halides in the synthesis of fragments of amphidinolides B, D, G, H, and L. Russian Journal of Organic Chemistry, 2017, 53, 433-444.	0.8	2
10	Synthesis of phenyl analog of retinoic acid methyl ester proceeding from 3-(bromomethyl)but-3-enal diethylacetal. Russian Journal of Organic Chemistry, 2017, 53, 1642-1650.	0.8	3
11	(3S)-4-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-methylbutan-1-olâ€"A universal building block for the synthesis of principal fragments of amphidinolides G and H. Russian Journal of Organic Chemistry, 2016, 52, 104-112.	0.8	0
12	Cyclopropanol intermediates in the synthesis of the C5–C14 fragment of laulimalides. Russian Journal of Organic Chemistry, 2016, 52, 355-367.	0.8	5
13	Synthesis of \hat{l}^2 -(2,2-diethoxyethyl)-substituted (allyl)tributylstannane and its application to asymmetric allylation. Russian Journal of Organic Chemistry, 2016, 52, 178-185.	0.8	3
14	Asymmetric syntheses of the lactone core of tetrahydrolipstatin and tetrahydroesterastin and of the oriental hornet Vespa Orientalis pheromone. Russian Journal of Organic Chemistry, 2015, 51, 842-848.	0.8	6
15	Cyclopropanol methodology in the synthesis of (4R)- and (4S)-4-methyltetrahydro-2H-pyran-2-ones. Application in the synthesis of insect pheromones with methyl-branched carbon skeleton. Russian Journal of Organic Chemistry, 2015, 51, 341-351.	0.8	7
16	New approach to the synthesis of macrocyclic core of cytotoxic lactone (+)-neopeltolide. Synthesis of C7â€"C14 segment basing on cyclopropanol intermediates. Russian Journal of Organic Chemistry, 2015, 51, 1061-1070.	0.8	8
17	Synthesis of ethyl (2E,5S)-7-{[tert-butyl(dimethyl)silyloxy]-methyl}-5-methylocta-2,7-dienoate, a universal C7–C14 building block for the preparation of amphidinolides B, D, G, H, and L. Russian Journal of Organic Chemistry, 2015, 51, 920-930.	0.8	8
18	(5S)-5-hydroxy-3-methylidenehexanoate as key intermediate in synthesis of tetrahydrolipstatin and pheromone of oriental hornet Vespa Orientalis. Russian Journal of Organic Chemistry, 2014, 50, 1558-1561.	0.8	4

#	Article	IF	CITATIONS
19	(4S,6R)-4-methyl-6-pentyltetrahydro-2H-pyran-2-one as an efficient intermediate in the preparation of chiral building blocks with methyl-branched carbon skeleton. Application to the synthesis of bioactive compounds. Russian Journal of Organic Chemistry, 2014, 50, 1621-1627.	0.8	3
20	Asymmetric synthesis of valilactone. Russian Journal of Organic Chemistry, 2014, 50, 100-104.	0.8	6
21	New asymmetric synthesis of a pheromone component of the shield bug Cantao Parentum. Russian Journal of Organic Chemistry, 2014, 50, 398-405.	0.8	12
22	Cyclopropane intermediates in the synthesis of chiral alcohols with methyl-branched carbon skeleton. Application in the synthesis of insect pheromones. Russian Journal of Organic Chemistry, 2014, 50, 934-942.	0.8	7
23	(3S,5R)-6-(benzyloxy)-3-methylhexane-1,5-diol in the synthesis of insect pheromones with methyl-branched carbon chain and of amphidinolide L C 7 –C 14 fragment. Russian Journal of Organic Chemistry, 2014, 50, 168-174.	0.8	5
24	Methyl (3R,5R)-3,5-dihydroxydecanoate in the asymmetric synthesis of Idea Leuconoe pheromone and formal syntheses of (+)-(3R,5R)-3-hydroxydecano-5-lactone, verbalactone, and Tolypothrix pentaether. Russian Journal of Organic Chemistry, 2013, 49, 838-842.	0.8	4
25	Enantioselective synthesis of (+)-(S)-7,8-dihydrokavain and (4R,6R)-4-hydroxy-6-(2-phenylethyl)tetrahydro-2H-pyran-2-one, lactone analog of compactin and mevinolin. Russian Journal of Organic Chemistry, 2013, 49, 712-716.	0.8	10
26	Asymmetric synthesis of (+)-(S)-Massoia lactone, pheromone of Idea leuconoe. Formal total synthesis of valilactone and lachnelluloic acid. Russian Journal of Organic Chemistry, 2013, 49, 1647-1654.	0.8	10
27	(4R,6R)-6-(hydroxymethyl)-4-methyltetrahydro-2H-pyran-2-one in the synthesis of polyfunctional compounds with the methyl-branched carbon skeleton. Russian Journal of Organic Chemistry, 2013, 49, 253-258.	0.8	8
28	Asymmetric synthesis of (\hat{a}^2) - (R) -massoia lactone, (R) - \hat{l} -decalactone, and $(+)$ - $(3R,5R)$ - 3 -hydroxydecano- 5 -lactone. Formal synthesis of verbalactone. Russian Journal of Organic Chemistry, 2012, 48, 977-981.	0.8	15
29	Preparation of 3-bromomethyl-3-butenal diethylacetal and its conversion into isoprenoid aldehydes derivatives. Russian Journal of Organic Chemistry, 2009, 45, 1623-1632.	0.8	19
30	Synthesis of methyl 3-bromomethylbut-3-enoate and its reactions with aldehydes and tributylchlorostannane in the presence of zinc. Russian Journal of Organic Chemistry, 2008, 44, 1261-1266.	0.8	37