Alexander S Tikhomirov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9823652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in the Discovery of Anthraquinone-Based Anticancer Agents. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 159-183.	1.6	64
2	RNA G-Quadruplexes in Kirsten Ras (<i>KRAS</i>) Oncogene as Targets for Small Molecules Inhibiting Translation. Journal of Medicinal Chemistry, 2017, 60, 9448-9461.	6.4	61
3	Photodynamic Therapy for <i>ras</i> -Driven Cancers: Targeting G-Quadruplex RNA Structures with Bifunctional Alkyl-Modified Porphyrins. Journal of Medicinal Chemistry, 2020, 63, 1245-1260.	6.4	34
4	Synthesis and Characterization of 4,11-Diaminoanthra[2,3- <i>b</i>]furan-5,10-diones: Tumor Cell Apoptosis through tNOX-Modulated NAD ⁺ /NADH Ratio and SIRT1. Journal of Medicinal Chemistry, 2015, 58, 9522-9534.	6.4	29
5	Design of an Activity-Based Probe for Human Neutrophil Elastase: Implementation of the Lossen Rearrangement To Induce Förster Resonance Energy Transfers. Biochemistry, 2018, 57, 742-752.	2.5	28
6	New anthra[2,3-b]furancarboxamides: A role of positioning of the carboxamide moiety in antitumor properties. European Journal of Medicinal Chemistry, 2019, 165, 31-45.	5.5	27
7	New antitumor anthra[2,3-b]furan-3-carboxamides: Synthesis and structure-activity relationship. European Journal of Medicinal Chemistry, 2018, 148, 128-139.	5.5	26
8	Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. European Journal of Medicinal Chemistry, 2015, 102, 661-676.	5.5	24
9	Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. European Journal of Medicinal Chemistry, 2020, 199, 112294.	5.5	22
10	Tri-armed ligands of G-quadruplex on heteroarene-fused anthraquinone scaffolds: Design, synthesis and pre-screening of biological properties. European Journal of Medicinal Chemistry, 2018, 159, 59-73.	5.5	20
11	Development and pharmaceutical evaluation of the anticancer Anthrafuran/Cavitron complex, a prototypic parenteral drug formulation. European Journal of Pharmaceutical Sciences, 2017, 109, 631-637.	4.0	17
12	Ligands of G-quadruplex nucleic acids. Russian Chemical Reviews, 2021, 90, 1-38.	6.5	17
13	Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3-b]furan-5,10-diones in Hepatocellular Carcinoma Cells. Cancers, 2019, 11, 420.	3.7	15
14	Aminomethylation of heliomycin: Preparation and anticancer characterization of the first series of semi-synthetic derivatives. European Journal of Medicinal Chemistry, 2018, 143, 1553-1562.	5.5	13
15	Thiophene-2-carboxamide derivatives of anthraquinone: A new potent antitumor chemotype. European Journal of Medicinal Chemistry, 2021, 221, 113521.	5.5	12
16	Heterocyclic Analogs of 5,12-Naphthacenequinone 14*. Synthesis of naphtho[2,3-f]indole-3-carboxylic Acid Derivatives. Chemistry of Heterocyclic Compounds, 2017, 53, 1072-1079.	1.2	11
17	Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie, 2021, 182, 152-165.	2.6	9
18	Heterocyclic analogs of 5,12-naphtacenequinone 13*. Synthesis of 4,11-diaminoanthra[2,3-b]furan-5,10-diones and sulfur-containing analogs. Chemistry of Heterocyclic Compounds, 2016, 52, 797-802.	1.2	6

#	Article	IF	CITATIONS
19	Heterocyclic analogs of 5,12-naphthacenequinone 16*. Synthesis and properties of new DNA ligands based on 4,11-diaminoanthra[2,3-b]thiophene-5,10-dione. Chemistry of Heterocyclic Compounds, 2020, 56, 727-733.	1.2	6
20	Experimental Evaluation of Anticancer Efficiency and Acute Toxicity of Anthrafuran for Oral Administration. Pharmaceuticals, 2020, 13, 81.	3.8	6
21	Heterocyclic analogs of 5,12-naphthacenequinone 15*. Synthesis of new anthra[2,3-b]thiophene-3(2)-carboxylic acids. Chemistry of Heterocyclic Compounds, 2018, 54, 612-617.	1.2	5
22	β-Hydroxylation of anthraquinone derivatives with benzaldehyde oxime as a source of hydroxyl group. Tetrahedron, 2019, 75, 130623.	1.9	5
23	Heterocyclic ring expansion yields anthraquinone derivatives potent against multidrug resistant tumor cells. Bioorganic Chemistry, 2022, 127, 105925.	4.1	5
24	Water-Soluble Heliomycin Derivatives to Target i-Motif DNA. Journal of Natural Products, 2021, 84, 1617-1625.	3.0	4
25	Methods for the synthesis of indole-3-carboxylic acid esters (microreview). Chemistry of Heterocyclic Compounds, 2018, 54, 923-925.	1.2	3
26	Methods for the synthesis of benzofuran-3-carboxylate esters (microreview). Chemistry of Heterocyclic Compounds, 2019, 55, 689-691.	1.2	3
27	Semi-synthetic Derivatives of Heliomycin with an Antiproliferative Potency. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 469-472.	1.6	2
28	A facile access to 2-substituted naphtho[2,3-g]quinoline-3-carboxylic acid esters via intramolecular cyclization and PyBOP-promoted functionalization. Tetrahedron, 2020, 76, 131418.	1.9	2
29	New methods for synthesis of 1-benzothiophene-3-carboxylic acid derivatives (microreview). Chemistry of Heterocyclic Compounds, 2021, 57, 131-133.	1.2	2
30	Abstract 6224: Novel antitumor semi-synthetic heliomycin derivatives direct targeting tNOX-NAD+-SIRT1 axis to activate apoptosis/autophagy, as determined by the cellular thermal shift assay (CETSA). , 2020, , .		1
31	Antibiotic heliomycin and its water-soluble 4-aminomethylated derivative provoke cell death in T24 bladder cancer cells by targeting sirtuin 1 (SIRT1) American Journal of Cancer Research, 2022, 12, 1042-1055	1.4	0