
James L Wynn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of Concurrent Comorbidities to Sepsis-Related Mortality in Preterm Infants â‰92 Weeks of Gestation at an Academic Neonatal Intensive Care Network. American Journal of Perinatology, 2024, 41, 134-142.	0.6	3
2	Sepsis and Mortality Prediction in Very Low Birth Weight Infants: Analysis of HeRO and nSOFA. American Journal of Perinatology, 2023, 40, 407-414.	0.6	17
3	Neonatal sepsis definitions from randomised clinical trials. Pediatric Research, 2023, 93, 1141-1148.	1.1	34
4	Hourly Kinetics of Critical Organ Dysfunction in Extremely Preterm Infants. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 75-87.	2.5	11
5	Criteria for Pediatric Sepsis—A Systematic Review and Meta-Analysis by the Pediatric Sepsis Definition Taskforce*. Critical Care Medicine, 2022, 50, 21-36.	0.4	55
6	Scoring Systems for Organ Dysfunction and Multiple Organ Dysfunction: The PODIUM Consensus Conference. Pediatrics, 2022, 149, S23-S31.	1.0	22
7	Evaluation of the Neonatal Sequential Organ Failure Assessment and Mortality Risk in Preterm Infants with Necrotizing Enterocolitis. Neonatology, 2022, 119, 334-344.	0.9	11
8	The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Science Translational Medicine, 2022, 14, .	5.8	17
9	Immunodeficiency Diseases of the Neonate. , 2021, , 62-92.		0
10	Evaluation of the Neonatal Sequential Organ Failure Assessment and Mortality Risk in Preterm Infants With Late-Onset Infection. JAMA Network Open, 2021, 4, e2036518.	2.8	57
11	Absence of relationship between serum cortisol and critical illness in premature infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2021, 106, 408-412.	1.4	2
12	Maximum vasoactive-inotropic score and mortality in extremely premature, extremely low birth weight infants. Journal of Perinatology, 2021, 41, 2337-2344.	0.9	14
13	Multicenter Validation of the Neonatal Sequential Organ Failure Assessment Score for Prognosis in the Neonatal Intensive Care Unit. Journal of Pediatrics, 2021, 236, 297-300.e1.	0.9	13
14	A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatric Research, 2020, 88, 85-90.	1.1	91
15	Application of metabolomics to neonatal meningitis. Pediatric Research, 2020, 88, 155-156.	1.1	0
16	BCG vaccination–induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Science Translational Medicine, 2020, 12, .	5.8	76
17	Exploring Clinically-Relevant Experimental Models of Neonatal Shock and Necrotizing Enterocolitis. Shock, 2020, 53, 596-604.	1.0	13
18	Pediatric Sepsis Definition—A Systematic Review Protocol by the Pediatric Sepsis Definition Taskforce. , 2020, 2, e0123.		46

#	Article	IF	CITATIONS
19	Challenges in developing a consensus definition of neonatal sepsis. Pediatric Research, 2020, 88, 14-26.	1.1	80
20	Cell-free hemoglobin increases inflammation, lung apoptosis, and microvascular permeability in murine polymicrobial sepsis. PLoS ONE, 2020, 15, e0228727.	1.1	33
21	Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatric Research, 2020, 88, 2-4.	1.1	58
22	Rethinking management of neonates at risk of sepsis. Lancet, The, 2019, 394, 279-281.	6.3	18
23	Prolonged early antimicrobials in ELBWs: too much for too little. Pediatric Research, 2019, 85, 929-930.	1.1	5
24	Early onset and hospital acquired neonatal sepsis associated with high mortality. Journal of Pediatrics, 2019, 204, 320-323.	0.9	5
25	Enteral Feeding as an Adjunct to Hypothermia in Neonates with Hypoxic-Ischemic Encephalopathy. Neonatology, 2018, 113, 347-352.	0.9	32
26	Why are preterm newborns at increased risk of infection?. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2018, 103, F391-F394.	1.4	144
27	Name and Characteristics of National Institutes of Health R01-Funded Pediatric Physician-Scientists. JAMA Pediatrics, 2018, 172, 297.	3.3	27
28	Chorioamnionitis, ILâ€17A, and fetal origins of neurologic disease. American Journal of Reproductive Immunology, 2018, 79, e12803.	1.2	26
29	Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. Journal of the Pediatric Infectious Diseases Society, 2018, 7, 129-135.	0.6	37
30	Progress in the management of neonatal sepsis: the importance of a consensus definition. Pediatric Research, 2018, 83, 13-15.	1.1	52
31	<scp>IL</scp> â€17 in neonatal health and disease. American Journal of Reproductive Immunology, 2018, 79, e12800.	1.2	36
32	Complete Genome Sequence of the Multidrug-Resistant Neonatal Meningitis Escherichia coli Serotype O75:H5:K1 Strain mcjchv-1 (NMEC-O75). Microbiology Resource Announcements, 2018, 7, .	0.3	11
33	Cutting Edge: IL-1α and Not IL-1β Drives IL-1R1–Dependent Neonatal Murine Sepsis Lethality. Journal of Immunology, 2018, 201, 2873-2878.	0.4	30
34	Impact of toll-like receptor 4 stimulation on human neonatal neutrophil spontaneous migration, transcriptomics, and cytokine production. Journal of Molecular Medicine, 2018, 96, 673-684.	1.7	12
35	Limited achievement of NIH research independence by pediatric K award recipients. Pediatric Research, 2018, 84, 479-480.	1.1	7
36	Genome-wide association study of sepsis in extremely premature infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F439-F445.	1.4	32

#	Article	IF	CITATIONS
37	Timing of Multiorgan Dysfunction among Hospitalized Infants with Fatal Fulminant Sepsis. American Journal of Perinatology, 2017, 34, 633-639.	0.6	31
38	Neutrophil chemotaxis and transcriptomics in term and preterm neonates. Translational Research, 2017, 190, 4-15.	2.2	41
39	Pathophysiology of Neonatal Sepsis. , 2017, , 1536-1552.e10.		9
40	Impact of Early-Life Exposures to Infections, Antibiotics, and Vaccines on Perinatal and Long-term Health and Disease. Frontiers in Immunology, 2017, 8, 729.	2.2	25
41	Immunological Defects in Neonatal Sepsis and Potential Therapeutic Approaches. Frontiers in Pediatrics, 2017, 5, 14.	0.9	65
42	Editorial: The Neonatal Immune System: A Unique Host-Microbial Interface. Frontiers in Pediatrics, 2017, 5, 274.	0.9	4
43	Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles. PLoS ONE, 2017, 12, e0179468.	1.1	9
44	Unique transcriptomic response to sepsis is observed among patients of different age groups. PLoS ONE, 2017, 12, e0184159.	1.1	40
45	Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile sepsis Model. Molecular Medicine, 2016, 22, 455-463.	1.9	15
46	Defining neonatal sepsis. Current Opinion in Pediatrics, 2016, 28, 135-140.	1.0	230
47	Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2627-35.	3.3	83
48	Histological chorioamnionitis shapes the neonatal transcriptomic immune response. Early Human Development, 2016, 98, 1-6.	0.8	30
49	Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent <i>Escherichia coli </i> . Infectious Diseases, 2016, 48, 461-466.	1.4	19
50	Heart rate characteristic index monitoring for bloodstream infection in an NICU: a 3-year experience. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2016, 101, F329-F332.	1.4	49
51	Neonatal CD71+ Erythroid Cells Do Not Modify Murine Sepsis Mortality. Journal of Immunology, 2015, 195, 1064-1070.	0.4	24
52	Postnatal Age Is a Critical Determinant of the Neonatal Host Response to Sepsis. Molecular Medicine, 2015, 21, 496-504.	1.9	53
53	Infectious Causes of Necrotizing Enterocolitis. Clinics in Perinatology, 2015, 42, 133-154.	0.8	97
54	TRIF-Dependent Innate Immune Activation Is Critical for Survival to Neonatal Gram-Negative Sepsis. Journal of Immunology, 2015, 194, 1169-1177.	0.4	24

#	Article	IF	CITATIONS
55	Fanning the Fire: Can Methemoglobin Enhance Neutrophil Activation?. EBioMedicine, 2015, 2, 184-185.	2.7	3
56	Reappraisal of Guidelines for Management of Neonates with Suspected Early-Onset Sepsis. Journal of Pediatrics, 2015, 166, 1070-1074.	0.9	128
57	Aminoglycoside-mediated relaxation of the ductus arteriosus in sepsis-associated PDA. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H732-H740.	1.5	29
58	Time for a Neonatal-Specific Consensus Definition for Sepsis. Pediatric Critical Care Medicine, 2014, 15, 523-528.	0.2	224
59	A Prime Time for Trained Immunity: Innate Immune Memory in Newborns and Infants. Neonatology, 2014, 105, 136-141.	0.9	77
60	Early Sepsis Does Not Increase the Risk of Late Sepsis in Very Low Birth Weight Neonates. Journal of Pediatrics, 2013, 162, 942-948.e3.	0.9	34
61	Role of Innate Immunity in Neonatal Infection. American Journal of Perinatology, 2013, 30, 105-112.	0.6	128
62	Determining Population and Developmental Pharmacokinetics of Metronidazole Using Plasma and Dried Blood Spot Samples From Premature Infants. Pediatric Infectious Disease Journal, 2013, 32, 956-961.	1.1	45
63	Use of a Computerized C-Reactive Protein (CRP) Based Sepsis Evaluation in Very Low Birth Weight (VLBW) Infants: A Five-Year Experience. PLoS ONE, 2013, 8, e78602.	1.1	23
64	The Neonatal Gastrointestinal Tract as a Conduit to Systemic Inflammation and Developmental Delays. , 2012, , 293-304.		0
65	Outcomes Following Candiduria in Extremely Low Birth Weight Infants. Clinical Infectious Diseases, 2012, 54, 331-339.	2.9	50
66	Very low birth weight neonates who survive early-onset sepsis do not have an increased risk of developing late-onset sepsis. Early Human Development, 2012, 88, 905-909.	0.8	15
67	Very late onset infections in the neonatal intensive care unit. Early Human Development, 2012, 88, 217-225.	0.8	12
68	The Influence of Developmental Age on the Early Transcriptomic Response of Children with Septic Shock. Molecular Medicine, 2011, 17, 1146-1156.	1.9	195
69	Beyond Bacteria: A Study of the Enteric Microbial Consortium in Extremely Low Birth Weight Infants. PLoS ONE, 2011, 6, e27858.	1.1	97
70	B cells enhance early innate immune responses during bacterial sepsis. Journal of Experimental Medicine, 2011, 208, 1673-1682.	4.2	144
71	Critical Role for CXC Ligand 10/CXC Receptor 3 Signaling in the Murine Neonatal Response to Sepsis. Infection and Immunity, 2011, 79, 2746-2754.	1.0	40
72	Pathophysiology and Treatment of Septic Shock in Neonates. Clinics in Perinatology, 2010, 37, 439-479.	0.8	183

#	Article	lF	CITATIONS
73	Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. Journal of Experimental Medicine, 2010, 207, 319-326.	4.2	116
74	Mechanisms and Regulation of the Gene-Expression Response to Sepsis. Pediatrics, 2010, 125, 1248-1258.	1.0	64
75	The Host Response to Sepsis and Developmental Impact. Pediatrics, 2010, 125, 1031-1041.	1.0	183
76	Role of Innate Host Defenses in Susceptibility to Early-Onset Neonatal Sepsis. Clinics in Perinatology, 2010, 37, 307-337.	0.8	142
77	Probiotic microbes: do they need to be alive to be beneficial?. Nutrition Reviews, 2009, 67, 546-550.	2.6	123
78	Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. Journal of Perinatology, 2009, 29, 79-88.	0.9	80
79	Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood, 2008, 112, 1750-1758.	0.6	158
80	Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood, 2007, 110, 3673-3681.	0.6	71
81	INCREASED MORTALITY AND ALTERED IMMUNITY IN NEONATAL SEPSIS PRODUCED BY GENERALIZED PERITONITIS. Shock, 2007, 28, 675-683.	1.0	127
82	MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. Journal of Experimental Medicine, 2007, 204, 1463-1474.	4.2	581
83	Increased Natural CD4+CD25+ Regulatory T Cells and Their Suppressor Activity Do Not Contribute to Mortality in Murine Polymicrobial Sepsis. Journal of Immunology, 2006, 177, 7943-7949.	0.4	121

84 Immunodeficiency diseases of the neonate. , 0, , 255-276.

0