Masao Morishita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9822349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a Prototype Thermodynamic Database for Nd-Fe-B Permanent Magnets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, S52-S62.	0.2	0
2	Calorimetric study of Zn ₁₃ La. International Journal of Materials Research, 2022, 95, 708-712.	0.3	0
3	Catalytic activity of Co-nanocrystal-doped tungsten carbide arising from an internal magnetic field. RSC Advances, 2021, 11, 14063-14070.	3.6	5
4	Efficient Hydrogen Generation from Ammonia Borane over Ru-Fe/porous CeO ₂ Induced by Intrinsic Charge State and Self-organized Microstructure. ISIJ International, 2021, 61, 1037-1042.	1.4	2
5	Composition–Oxygen Partial Pressure Diagram of the Cr–B–O Ternary System Based on the Standard Gibbs Energies of Formation of CrB ₄ , CrB ₂ , Cr ₃ B ₄ , Cr ₅ B ₃ and CrBO ₃ Determined by Solid Electrolyte. Materials Transactions 2021 62 821-828	1.2	1
6	Development of a prototype thermodynamic database for Nd-Fe-B permanent magnets. Science and Technology of Advanced Materials, 2021, 22, 557-570.	6.1	9
7	Hydrogen Generation from Ammonia-Borane over Ni–B Amorphous Alloys Prepared from Aqueous Solution Based on Thermodynamic Prediction of Hidden Metastable of State. Materials Transactions, 2021, 62, 1368-1375.	1.2	0
8	Calorimetric study of Nd2Fe14B: Heat capacity, standard Gibbs energy of formation and magnetic entropy. Thermochimica Acta, 2020, 690, 178672.	2.7	7
9	Determination of Gibbs Energies of Formation of Cr ₃ B ₄ , CrB ₂ , and CrB ₄ by Electromotive Force Measurement Using Solid Electrolyte. Materials Transactions, 2020, 61, 2357-2362.	1.2	3
10	Pd-Dispersed CeO ₂ Catalyst Prepared from Dealloying the Pd–Ce–Al Ternary Amorphous Alloy Used for Oxidation Reaction. Materials Transactions, 2020, 61, 1848-1852.	1.2	1
11	Hydrogen Generation from Ammonia Borane over Ru/Nanoporous CeO ₂ Catalysts Prepared from Amorphous Alloys. Materials Transactions, 2019, 60, 845-848.	1.2	12
12	Thermodynamic Properties for Nd ₂ (MoO ₄) ₃ Formed in the Nuclear Fuel Waste Glasses. Materials Transactions, 2019, 60, 111-120.	1.2	5
13	Preparation of Nanoporous CeO ₂ Catalyst Supports by Chemical Treatment of Amorphous Alloys and Investigation of Ni/CeO ₂ Catalytic Activity. Materials Transactions, 2019, 60, 1964-1967.	1.2	5
14	Thermodynamic properties of cerium molybdate. International Journal of Materials Research, 2019, 110, 715-725.	0.3	0
15	Thermodynamic properties for Sm2(MoO4)3 determined by calorimetric measurement and re-evaluation of heat capacities for elemental molybdenum: standard entropy, Néel temperature, solubility product. Monatshefte Für Chemie, 2018, 149, 341-356.	1.8	7
16	Thermodynamic properties for MMoO4 (M = Mg, Sr and Ba) as the end-members of the yellow phases formed in the nuclear fuel waste glasses. Applied Geochemistry, 2018, 98, 310-320.	3.0	11
17	Thermodynamic properties for calcium molybdate, molybdenum tri-oxide and aqueous molybdate ion. Journal of Chemical Thermodynamics, 2017, 114, 30-43.	2.0	19
18	Determination of Gibbs Energy of Mixing of Tungsten-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1703-1714.	2.1	4

MASAO MORISHITA

#	Article	IF	CITATIONS
19	Third Law Entropy of Silver Molybdate. Materials Transactions, 2017, 58, 868-872.	1.2	11
20	Thermodynamic Properties for Nd ₂ (MoO ₄) ₃ Formed in the Nuclear Fuel Waste Glasses. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 485-493.	0.4	4
21	Third Law Entropy of Barium Molybdate. Materials Transactions, 2016, 57, 46-51.	1.2	16
22	Preparation of Cobalt-Antimony Thermoelectric Film using Pulse Electrolysis in Ethylene Glycol-CoCl ₂ -SbCl ₃ Non-Aqueous Solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 40-45.	0.2	2
23	Calculating entropies of alkaline earth metal molybdates. Monatshefte Für Chemie, 2016, 147, 263-267.	1.8	12
24	The Third Law Entropy of Strontium Molybdates. Materials Transactions, 2015, 56, 545-549.	1.2	17
25	Thermoelectric Conversion Films of Fe-Al Binary System prepared by Electrodeposition in AlCl ₃ -NaCl-KCl-FeCl ₂ Quaternary Molten Salts. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2015, 66, 521-526.	0.2	1
26	Thermodynamic properties of molybdate ion: reaction cycles and experiments. Pure and Applied Chemistry, 2015, 87, 461-476.	1.9	16
27	Standard Gibbs Energies of Formation of the Ferro- and Paramagnetic Phases of AlNd ₃ . Journal of Physical Chemistry C, 2012, 116, 20489-20495.	3.1	14
28	The Tungsten Carbide Involving the Nano Metal Cobalt Domains Synthesized by Carburizing the Cobalt Supersaturated-Tungsten Powder with CO Gas. Journal of the American Ceramic Society, 2012, 95, 3797-3801.	3.8	1
29	Calorimetric study of AlNd2: Heat capacity. Standard Gibbs energy of formation. Thermochimica Acta, 2011, 526, 90-98.	2.7	16
30	Determination of Gibbs Energy of Formation of Molybdenum-Boron Binary System by Electromotive Force Measurement Using Solid Electrolyte. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 114-120.	2.1	5
31	Re-evaluation of activities of magnesium and zinc components in the magnesium—zinc binary system from very low to high temperature. International Journal of Materials Research, 2011, 102, 128-133.	0.3	4
32	Relative Partial Molar Gibbs Energy of Magnesium Component Substituted into Zinc Site in the Mg-Zn Binary Compounds. Materials Transactions, 2010, 51, 1705-1708.	1.2	10
33	Formation energies of the intermetallic compounds at the ground and thermally excited states determined by the ab initio energetic calculation and calorimetric measurement. International Journal of Quantum Chemistry, 2009, 109, 2695-2705.	2.0	12
34	Temperature dependence of standard Gibbs energy of formation of Al2Nd from near absolute OK to room temperature. Journal of Alloys and Compounds, 2008, 456, 40-45.	5.5	1
35	Standard Gibbs energy of formation of MgLa determined by solution calorimetry and heat capacity measurement from near absolute zero kelvin. Journal of Alloys and Compounds, 2008, 458, 41-46.	5.5	10
36	Thermal Spectroscopy of Magnesium–Zinc Binary Compounds Near Absolute Zero Kelvin: Coefficient of the Electronic Contribution to Heat Capacity and Density of States in the Vicinity of the Fermi Level. Advances in Quantum Chemistry, 2008, , 1-12.	0.8	3

#	Article	IF	CITATIONS
37	Standard Gibbs Energy of Formation of Mg ₃ La Determined by Solution Calorimetry and Heat Capacity Measurement from Near Absolute Zero Kelvin. Materials Transactions, 2007, 48, 2159-2164.	1.2	13
38	Thermodynamic Properties of AlNd Determined by Low Temperature Heat Capacity Measurements. Materials Transactions, 2007, 48, 1961-1964.	1.2	0
39	Heat Capacity of La _{1−<i>X</i>} Sr <i>_X</i> FeO< from 2 K to 1340 K. Materials Transactions, 2007, 48, 3109-3117.	t;9L18>	3&minu
40	Determination of standard entropy of formation of Al11Nd3 by heat capacity measurement from near absolute zero Kelvin. Journal of Alloys and Compounds, 2007, 433, 1-5.	5.5	4
41	Standard Gibbs energy of formation of Zn ₁₇ Y ₂ and Zn ₁₂ Y determined by solution calorimetry and measurement of heat capacity from near zero Kelvin. International Journal of Materials Research, 2007, 98, 10-15.	0.3	6
42	Calcualated Phase Diagrams of the Ni-Mo-B and Ni-W-B Ternary Sysyems on the Basis of the Data Obtained by Thermodynamic Measurement of the Related Materials. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53, 419-429.	0.2	5
43	Preparation of White Heart Malleable Cast Iron in Na ₂ O-K ₂ O-SiO ₂ Oxide Molten Salt. Materials Transactions, 2006, 47, 1878-1881.	1.2	1
44	Standard Gibbs Energy of Formation of Zn ₈ La Determined by Solution Calorimetry and Measurement of Heat Capacity from Near Absolute Zero Kelvin. Materials Transactions, 2006, 47, 1555-1559.	1.2	21
45	Determination of Standard Gibbs Energy of Formation of Al ₂ Nd by Solution Calorimetry and Heat Capacity Measurement from Near Absolute Zero Kelvin. Materials Transactions, 2006, 47, 2044-2048.	1.2	4
46	Thermodynamics of the formation of magnesium–zinc intermetallic compounds in the temperature range from absolute zero to high temperature. Acta Materialia, 2006, 54, 3151-3159.	7.9	48
47	Determination of gibbs energy of formation of Ni-B-O system by electromotive force measurement using solid electrolyte. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 607-613.	2.1	7
48	Thermodynamics of self-assembly of ions in the ITO solid solution. Microelectronic Engineering, 2005, 81, 382-388.	2.4	9
49	Standard entropy of formation of SnMg2 at 298K. Journal of Alloys and Compounds, 2005, 398, 12-15.	5.5	11
50	Direct Measurement of Relative Partial Molar Enthalpy of SiO ₂ in SiO ₂ –M ₂ 0 (M=Li, Na, K, Cs) Binary and SiO ₂ –CaO–Al ₂ O ₃ Ternary Melts. Journal of the American Ceramic Society. 2004. 87. 1550-1555.	3.8	27
51	Standard gibbs energy of formation of Mg48Zn52 determined by solution calorimetry and measurement of heat capacity from near absolute zero kelvin. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2004, 35, 891-895.	2.1	43
52	Calorimetric study of Zn ₁₃ La. International Journal of Materials Research, 2004, 95, 708-712.	0.8	28
53	Determination of standard gibbs energies of formation of Fe2Mo3O12, Fe2Mo3O8, Fe2MoO4, and FeMoO4 of the Fe-Mo-O ternary system and î¼ phase of the Fe-Mo binary system by electromotive force measurement using a Y2O3-stabilized ZrO2 solid electrolyte. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2003, 34, 653-659	2.1	21
54	Calorimetric Study of Nickel Molybdate: Heat Capacity, Enthalpy, and Gibbs Energy of Formation.	3.8	53

Masao Morishita

1				
Ŧ	Iournal of the American	Coromic Society	2002 06	1027 1022
	Journal of the American		2003,00,	172/-1732.
	-			

MASAO MORISHITA

#	Article	IF	CITATIONS
55	Calorimetric study of MgZn ₂ and Mg ₂ Zn ₁₁ . International Journal of Materials Research, 2003, 94, 967-971.	0.8	42
56	Calculated phase diagram of the Ni–Mo–B ternary system. Journal of Alloys and Compounds, 2001, 314, 212-218.	5.5	35
57	Effect of Cu on the Corrosion Resistance of a NiMo ₂ B ₂ -Dispersed Ni-Based Alloy. Materials Transactions, JIM, 2000, 41, 1593-1598.	0.9	5
58	Effect of Cu Addition on the Corrosion Resistance of a Ni ₃ B-Dispersed Ni-Based Alloy in a HCl Aqueous Solution. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 207-212.	0.4	5
59	Effect of Cu on the Corrosion Resistance of a NiMo ₂ B ₂ -Dispersed Ni-Based Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1255-1261.	0.4	5
60	Calculated Phase Diagram of the Ni–W–B Ternary System. Materials Transactions, JIM, 1999, 40, 600-605.	0.9	18
61	Design of Molten Salt Bath on the Basis of Acid-Base Cooperative Reaction Mechanism. Smooth Electrodeposition of Tungsten from KF-B ₂ O ₃ -WO ₃ Molten Salt. Electrochemistrv. 1999. 67. 677-683.	1.4	8
62	Electronic States of Oxygen Ions of Molten Slags Used for Iron and Steel Making. Advances in Quantum Chemistry, 1998, 29, 285-296.	0.8	2
63	Theoretical Study of Si <i>K</i> _β X-ray Fluorescence Spectrum of SiO ₂ –Na ₂ O Binary Slag by DV-Xα Molecular Orbital Calculation. Materials Transactions, JIM, 1997, 38, 724-730.	0.9	3
64	Improvement in the Corrosion Resistance of Zinc-plated Steel by Electrodeposition of Magnesium from a Molten Salt ISIJ International, 1996, 36, 714-719.	1.4	33
65	Electronic States of Oxygen Ions of Molten Slags Used for Iron and Steel Making ISIJ International, 1996, 36, 1259-1263.	1.4	4
66	Correlation between Viscosity and Bond Order Calculated from the Molecular Orbital Theory for Molten SiO ₂ . Materials Transactions, JIM, 1995, 36, 44-47.	0.9	4
67	Phase Diagram of LiCl-KCl-MgCl ₂ Ternary System in Low MgCl ₂ Composition. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59, 799-805.	0.4	3
68	Electronic States of Molten Chlorides of Alkali Metals, Magnesium and Zinc. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 276-282.	0.4	5
69	Molecular Orbital Calculation of Local Electronic States around Si Ions in Molten SiO ₂ . Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 1156-1160.	0.4	4
70	Preparation of Rare Earth Oxide Dispersion Tungsten Powder by Spray Dry Method and It's Sintering Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40, 707-712.	0.2	1