Subra Suresh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9820736/publications.pdf

Version: 2024-02-01

290 papers 43,897 citations

103 h-index 202 g-index

299 all docs 299 docs citations

times ranked

299

26827 citing authors

#	Article	IF	CITATIONS
1	Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale. Science, 2009, 324, 349-352.	6.0	1,953
2	Mechanical behavior of nanocrystalline metals and alloys11The Golden Jubilee Issueâ€"Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Materialia, 2003, 51, 5743-5774.	3.8	1,746
3	Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia, 2001, 49, 3899-3918.	3.8	1,272
4	Biomechanics and biophysics of cancer cellsâ^†. Acta Biomaterialia, 2007, 3, 413-438.	4.1	957
5	Cell and molecular mechanics of biological materials. Nature Materials, 2003, 2, 715-725.	13.3	914
6	Sizeâ€Dependent Endocytosis of Nanoparticles. Advanced Materials, 2009, 21, 419-424.	11.1	895
7	Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 2005, 1, 15-30.	4.1	748
8	An experimental and numerical study of deformation in metal-ceramic composites. Acta Metallurgica, 1989, 37, 3029-3050.	2.1	739
9	Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Materialia, 2005, 53, 3369-3382.	3.8	725
10	Graded Materials for Resistance to Contact Deformation and Damage. Science, 2001, 292, 2447-2451.	6.0	716
11	A new method for estimating residual stresses by instrumented sharp indentation. Acta Materialia, 1998, 46, 5755-5767.	3.8	700
12	Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids, 2003, 51, 2259-2280.	2.3	696
13	Deformation of electrodeposited nanocrystalline nickel. Acta Materialia, 2003, 51, 387-405.	3.8	696
14	Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10584-10589.	3.3	633
15	Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4970-4975.	3.3	632
16	Determination of elastoplastic properties by instrumented sharp indentation. Scripta Materialia, 1999, 40, 1191-1198.	2.6	628
17	Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature, 2002, 418, 307-310.	13.7	621
18	Refractive index maps and membrane dynamics of human red blood cells parasitized by <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13730-13735.	3.3	619

#	Article	IF	Citations
19	Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 2005, 53, 2169-2179.	3.8	613
20	Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Materialia, 2003, 51, 5159-5172.	3.8	527
21	Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3031-3036.	3.3	522
22	Discrete and continuous deformation during nanoindentation of thin films. Acta Materialia, 2000, 48, 2277-2295.	3.8	497
23	Oxide-Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1981, 12, 1435-1443.	1.1	455
24	Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Materialia, 2006, 54, 5421-5432.	3.8	448
25	Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1522-1527.	3.3	448
26	Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bulletin, 2010, 35, 382-388.	1.7	424
27	A geometric model for fatigue crack closure induced by fracture surface roughness. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 1627-1631.	1.4	400
28	Biomechanics and biophysics of cancer cellsâ^†. Acta Materialia, 2007, 55, 3989-4014.	3.8	393
29	Cell separation using tilted-angle standing surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12992-12997.	3.3	390
30	Microstructural development in an aluminum alloy-SiC whisker composite. Acta Metallurgica, 1988, 36, 1691-1704.	2.1	388
31	Spectrin-Level Modeling of the Cytoskeleton and Optical Tweezers Stretching of the Erythrocyte. Biophysical Journal, 2005, 88, 3707-3719.	0.2	376
32	Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metallurgica Et Materialia, 1991, 39, 735-752.	1.9	365
33	Nanoscale heterogeneity promotes energy dissipation in bone. Nature Materials, 2007, 6, 454-462.	13.3	362
34	Quantifying the early stages of plasticity through nanoscale experiments and simulations. Physical Review B, 2003, 67, .	1.1	361
35	Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1289-1294.	3.3	358
36	An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites. Acta Metallurgica Et Materialia, 1991, 39, 2317-2335.	1.9	340

#	Article	IF	CITATIONS
37	Crack deflection: Implications for the growth of long and short fatigue cracks. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1983, 14, 2375-2385.	1.4	321
38	Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Materialia, 2001, 49, 3781-3789.	3.8	313
39	Nano-indentation of copper thin films on silicon substrates. Scripta Materialia, 1999, 41, 951-957.	2.6	310
40	Grain size effects on the fatigue response of nanocrystalline metals. Scripta Materialia, 2003, 49, 675-680.	2.6	301
41	Depth-sensing instrumented indentation with dual sharp indenters. Acta Materialia, 2003, 51, 3713-3729.	3.8	299
42	Measuring single-cell density. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10992-10996.	3.3	287
43	Theory of indentation of piezoelectric materials. Acta Materialia, 1999, 47, 2153-2164.	3.8	270
44	The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Materialia, 2003, 51, 5881-5905.	3.8	268
45	Indentation of solids with gradients in elastic properties: Part I. Point force. International Journal of Solids and Structures, 1997, 34, 2357-2392.	1.3	241
46	Fatigue behavior of nanocrystalline metals and alloys. International Journal of Fatigue, 2005, 27, 1147-1158.	2.8	241
47	Simulation of defect nucleation in a crystal. Nature, 2001, 411, 656-656.	13.7	238
48	Cytoskeletal dynamics of human erythrocyte. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4937-4942.	3.3	234
49	On microstructural evolution and micromechanical modelling of deformation of a whisker-reinforced metal-matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107, 49-61.	2.6	231
50	Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 937-940.	1.4	230
51	Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. Journal of the Mechanics and Physics of Solids, 2004, 52, 691-724.	2.3	227
52	A microfabricated deformability-based flow cytometer with application to malaria. Lab on A Chip, 2011, 11, 1065.	3.1	223
53	Micromechanisms of fatigue crack growth retardation following overloads. Engineering Fracture Mechanics, 1983, 18, 577-593.	2.0	211
54	Ultralarge elastic deformation of nanoscale diamond. Science, 2018, 360, 300-302.	6.0	208

#	Article	IF	CITATIONS
55	Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scripta Materialia, 2000, 42, 833-839.	2.6	206
56	Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 987-992.	3.3	201
57	Indentation of solids with gradients in elastic properties: Part II. axisymmetric indentors. International Journal of Solids and Structures, 1997, 34, 2393-2428.	1.3	200
58	Mixed-Mode Fracture Toughness of Ceramic Materials. Journal of the American Ceramic Society, 1990, 73, 1257-1267.	1.9	195
59	Crack propagation in ceramics under cyclic loads. Journal of Materials Science, 1987, 22, 1173-1192.	1.7	193
60	Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7804-7809.	3.3	193
61	Molecularly based analysis of deformation of spectrin network and human erythrocyte. Materials Science and Engineering C, 2006, 26, 1232-1244.	3.8	190
62	Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradients. Journal of the Mechanics and Physics of Solids, 1996, 44, 683-721.	2.3	189
63	Viscoelasticity of the human red blood cell. American Journal of Physiology - Cell Physiology, 2007, 293, C597-C605.	2.1	187
64	Elastoplastic analysis of thermal cycling: layered materials with compositional gradients. Acta Metallurgica Et Materialia, 1995, 43, 1335-1354.	1.9	184
65	Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9213-9217.	3.3	184
66	Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7052-7062.	3.3	178
67	Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites. Acta Metallurgica Et Materialia, 1993, 41, 1665-1681.	1.9	175
68	Aspects of equivalence between contact mechanics and fracture mechanics: theoretical connections and a life-prediction methodology for fretting-fatigue. Acta Materialia, 1998, 46, 2955-2968.	3.8	172
69	Spherical indentation of compositionally graded materials: Theory and experiments. Acta Materialia, 1997, 45, 1307-1321.	3.8	170
70	Elastic clues in cancer detection. Nature Nanotechnology, 2007, 2, 748-749.	15.6	165
71	Quantifying the biophysical characteristics of <i>Plasmodium-falciparum</i> -parasitized red blood cells in microcirculation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 35-39.	3.3	165
72	Biomechanics of brain tissue. Acta Biomaterialia, 2011, 7, 83-95.	4.1	160

#	Article	IF	Citations
73	Large deformation of living cells using laser traps. Acta Materialia, 2004, 52, 1837-1845.	3.8	159
74	Fracture toughness and fatigue crack growth characteristics of nanotwinned copper. Acta Materialia, 2011, 59, 2437-2446.	3.8	158
75	Fracture normal to a bimaterial interface: Effects of plasticity on crack-tip shielding and amplification. Acta Metallurgica Et Materialia, 1995, 43, 1157-1169.	1.9	157
76	Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Materialia, 2009, 57, 5165-5173.	3.8	156
77	Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships. Journal of Materials Research, 2006, 21, 1871-1877.	1.2	155
78	Lipid bilayer and cytoskeletal interactions in a red blood cell. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13356-13361.	3.3	155
79	Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1984, 15, 369-379.	1.4	153
80	Accelerated aging in cast Al alloy-SiC particulate composites. Scripta Metallurgica, 1989, 23, 1599-1602.	1.2	150
81	Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 257, 215-224.	2.6	149
82	Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers. Journal of Applied Physics, 1996, 80, 1388-1398.	1.1	143
83	Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys. Acta Metallurgica, 1987, 35, 25-46.	2.1	140
84	Coefficients of thermal expansion of metal-matrix composites for electronic packaging. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 839-850.	1.1	132
85	Effective elastic response of two-phase composites. Acta Metallurgica Et Materialia, 1994, 42, 77-97.	1.9	128
86	Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta Materialia, 1999, 47, 3915-3926.	3.8	127
87	Strain rate sensitivity of Cu with nanoscale twins. Scripta Materialia, 2006, 55, 319-322.	2.6	126
88	Hertzianâ€Crack Suppression in Ceramics with Elasticâ€Modulusâ€Graded Surfaces. Journal of the American Ceramic Society, 1998, 81, 2301-2308.	1.9	125
89	Crack initiation in cyclic compression and its applications. Engineering Fracture Mechanics, 1985, 21, 453-463.	2.0	124
90	Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials. Journal of Applied Mechanics, Transactions ASME, 1993, 60, 77-84.	1.1	122

#	Article	IF	CITATIONS
91	Theory and experiments of fracture in cyclic compression: Single phase ceramics, transforming ceramics and ceramic composites. Acta Metallurgica, 1988, 36, 1455-1470.	2.1	117
92	Micromechanical modeling of reinforcement fracture in particle-reinforced metal-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 2403-2420.	1.1	117
93	The growth of a fatigue crack approaching a perpendicularly-oriented, bimaterial interface. Scripta Metallurgica Et Materialia, 1992, 27, 1189-1194.	1.0	116
94	A comprehensive unit cell model: a study of coupled effects in piezoelectric 1–3 composites. International Journal of Solids and Structures, 2000, 37, 5447-5464.	1.3	116
95	Circulating Tumor Cell Phenotyping via Highâ€Throughput Acoustic Separation. Small, 2018, 14, e1801131.	5.2	115
96	High-Temperature Failure of an Alumina-Silicon Carbide Composite under Cyclic loads: Mechanisms of Fatigue Crack-Tip Damage. Journal of the American Ceramic Society, 1989, 72, 1233-1238.	1.9	114
97	Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2910-2915.	3.3	113
98	Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomaterialia, 2012, 8, 4130-4138.	4.1	112
99	Effects of sic content on fatigue crack growth in. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2231-2242.	1.4	110
100	Large deformation and geometric instability of substrates with thin-film deposits. Journal of Applied Physics, 1997, 81, 3457-3464.	1.1	109
101	On the influence of environment on the load ratio dependence of fatigue thresholds in pressure vessel steel. Engineering Fracture Mechanics, 1983, 18, 785-800.	2.0	108
102	Multiple stiffening effects of nanoscale knobs on human red blood cells infected with <i>Plasmodium falciparum</i> malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6068-6073.	3.3	108
103	Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vitro. Acta Biomaterialia, 2011, 7, 4090-4101.	4.1	107
104	Effects of SiC reinforcement and aging treatment on fatigue crack growth in an Alî—,SiC composite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1988, 102, 211-216.	2.6	105
105	An experimental and numerical study of cyclic deformation in metal-matrix composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 919-934.	1.4	105
106	Effective plastic response of two-phase composites. Acta Metallurgica Et Materialia, 1995, 43, 1701-1722.	1.9	105
107	Aluminium-Titanium Diboride (Al-TiB2) Metal Matrix Composites: Challenges and Opportunities. Procedia Engineering, 2012, 38, 89-97.	1.2	102
108	Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cellular Microbiology, 2012, 14, 983-993.	1.1	102

#	Article	IF	CITATIONS
109	Multiphase equilibrium analysis via a generalized equation of state for associating mixtures. Industrial & Engineering Chemistry Research, 1992, 31, 2783-2794.	1.8	101
110	Combined Mode I-Mode III Fracture of Fatigue-Precracked Alumina. Journal of the American Ceramic Society, 1987, 70, 726-733.	1.9	99
111	Elastoplastic analysis of thermal cycling: Layered materials with sharp interfaces. Journal of the Mechanics and Physics of Solids, 1994, 42, 979-1018.	2.3	99
112	Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1422-1427.	3.3	99
113	Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria. PLoS Computational Biology, 2011, 7, e1002270.	1.5	98
114	Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. Journal of Applied Physics, 2003, 94, 6050-6058.	1.1	94
115	Gradients in elastic modulus for improved contact-damage resistance. Part I: The silicon nitride–oxynitride glass system. Acta Materialia, 2001, 49, 3255-3262.	3.8	93
116	Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9574-9579.	3.3	93
117	Thermal expansion of metals reinforced with ceramic particles and microcellular foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3700-3717.	1.1	88
118	Continuous measurements of load-penetration curves with spherical microindenters and the estimation of mechanical properties. Journal of Materials Research, 1998, 13, 1390-1400.	1.2	88
119	Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems. Annals of Biomedical Engineering, 2011, 39, 1041-1050.	1.3	88
120	Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system. Extreme Mechanics Letters, 2014, 1, 35-41.	2.0	88
121	Improved fatigue resistance of gradient nanograined Cu. Acta Materialia, 2019, 166, 56-66.	3.8	87
122	Influence of corrosion deposits on near-threshold fatigue crack growth behavior in 2xxx and 7xxx series aluminum alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 2271-2280.	1.4	86
123	Dynamic fatigue crack growth in polycrystalline alumina under cyclic compression. Journal of Materials Science Letters, 1986, 5, 774-778.	0.5	86
124	Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. Journal of Biomedical Optics, 2010, 15, 020506.	1.4	85
125	Effects of mechanical properties and surface friction on elasto-plastic sliding contact. Mechanics of Materials, 2008, 40, 206-219.	1.7	84
126	Electric impedance microflow cytometry for characterization of cell disease states. Lab on A Chip, 2013, 13, 3903.	3.1	84

#	Article	IF	Citations
127	Biophysics of Malarial Parasite Exit from Infected Erythrocytes. PLoS ONE, 2011, 6, e20869.	1.1	84
128	Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions. International Journal of Solids and Structures, 1997, 34, 3415-3432.	1.3	82
129	Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1984, 15, 1193-1207.	1.1	80
130	Analyses of internal structures and defects in materials using physics-informed neural networks. Science Advances, 2022, 8, eabk0644.	4.7	80
131	Plastic near-tip fields for branched cracks. International Journal of Fracture, 1986, 30, 237-259.	1.1	78
132	Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Applied Physics Letters, 2005, 87, 103109.	1.5	78
133	Mechanics of indentation of plastically graded materials—l: Analysis. Journal of the Mechanics and Physics of Solids, 2008, 56, 157-171.	2.3	78
134	Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties. Acta Materialia, 2003, 51, 4197-4208.	3.8	76
135	Computational Biorheology of Human Blood Flow in Health and Disease. Annals of Biomedical Engineering, 2014, 42, 368-387.	1.3	73
136	An experimental study of spherical indentation on piezoelectric materials. Acta Materialia, 1999, 47, 2417-2430.	3.8	72
137	Deformation of the ultra-strong. Nature, 2008, 456, 716-717.	13.7	71
138	A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Materialia, 2011, 59, 6861-6868.	3.8	70
139	Deep elastic strain engineering of bandgap through machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4117-4122.	3.3	70
140	Plastic deformation of continuous fiber-reinforced metal-matrix composites: Effects of fiber shape and distribution. Scripta Metallurgica Et Materialia, 1990, 24, 325-330.	1.0	69
141	Cyclic strain hardening of nanocrystalline nickel. Scripta Materialia, 2006, 54, 1151-1155.	2.6	69
142	Mechanics of indentation of plastically graded materials—II: Experiments on nanocrystalline alloys with grain size gradients. Journal of the Mechanics and Physics of Solids, 2008, 56, 172-183.	2.3	69
143	The frictional sliding response of elasto-plastic materials in contact with a conical indenter. International Journal of Solids and Structures, 2007, 44, 1970-1989.	1.3	68
144	Biomechanics of single cortical neurons. Acta Biomaterialia, 2011, 7, 1210-1219.	4.1	68

#	Article	IF	CITATIONS
145	Differential growth and shape formation in plant organs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12359-12364.	3.3	68
146	Actuation and locomotion driven by moisture in paper made with natural pollen. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8711-8718.	3.3	68
147	Fatigue cracking in materials with brittle surface coatings. Scripta Metallurgica Et Materialia, 1993, 29, 237-242.	1.0	67
148	Gradients in elastic modulus for improved contact-damage resistance. part ii: the silicon nitride–silicon carbide system. Acta Materialia, 2001, 49, 3263-3268.	3.8	67
149	Human natural killer cells control <i>Plasmodium falciparum</i> infection by eliminating infected red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1479-1484.	3.3	67
150	Determination of processing-induced stresses and properties of layered and graded coatings: Experimental method and results for plasma-sprayed Niî—,Al2O3. Acta Materialia, 1997, 45, 3123-3134.	3.8	65
151	Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals. Applied Physics Letters, 2003, 83, 1441-1443.	1.5	65
152	Three-dimensional model of strength and ductility of polycrystalline copper containing nanoscale twins. Acta Materialia, 2008, 56, 4647-4657.	3.8	65
153	Size effects on the mechanical properties of thin polycrystalline metal films on substrates. Acta Materialia, 2002, 50, 1881-1893.	3.8	62
154	Curvature changes during thermal cycling of a compositionally graded Niî—Al2O3 multi-layered material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 205, 59-71.	2.6	61
155	Electrical response during indentation of piezoelectric materials: A new method for material characterization. Journal of Applied Physics, 1999, 85, 380-387.	1.1	61
156	Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Scientific Reports, 2012, 2, 614.	1.6	61
157	Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19725-19730.	3.3	61
158	Stress evolution in passivated thin films of Cu on silica substrates. Journal of Materials Research, 1998, 13, 1928-1937.	1.2	60
159	An experimental investigation of fretting fatigue in Ti-6Al-4V: the role of contact conditions and microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1131-1146.	1.1	60
160	Identification of crack location and depth in a cantilever beam using a modular neural network approach. Smart Materials and Structures, 2004, 13, 907-915.	1.8	60
161	Constitutive behavior of a microcracking brittle solid in cyclic compression. Journal of the Mechanics and Physics of Solids, 1987, 35, 721-742.	2.3	58
162	Elasto-plastic deformation of compositionally graded metal-ceramic composites. Acta Materialia, 1997, 45, 3401-3417.	3.8	58

#	Article	IF	CITATIONS
163	Transformation of hard pollen into soft matter. Nature Communications, 2020, 11, 1449.	5.8	58
164	Microstructural evolution in passivated Al films on Si substrates during thermal cycling. Acta Materialia, 2002, 50, 3435-3452.	3.8	57
165	The influence of chromium addition on the toughness of î³-Niα-Al2O3 interfaces. Acta Materialia, 1997, 45, 3503-3513.	3.8	56
166	Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals. International Journal of Fatigue, 2005, 27, 1159-1163.	2.8	55
167	Simultaneous polymerization and adhesion under hypoxia in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9473-9478.	3.3	55
168	Some considerations on the modelling of oxide-induced fatigue crack closure using solutions for a rigid wedge inside a linear elastic crack. Scripta Metallurgica, 1983, 17, 575-580.	1.2	54
169	Thermal cycling and stress relaxation response of Si-Al and Si-Al-SiO2 layered thin films. Acta Metallurgica Et Materialia, 1995, 43, 3915-3926.	1.9	53
170	Spherical indentation of composite laminates with controlled gradients in elastic anisotropy. International Journal of Solids and Structures, 1998, 35, 5097-5113.	1.3	53
171	An analysis of ductile failure by grain boundary void growth. Acta Metallurgica, 1989, 37, 99-120.	2.1	52
172	Evolution of stresses in passivated and unpassivated metal interconnects. Journal of Materials Research, 1998, 13, 1956-1966.	1.2	52
173	Measurement of full-field curvature and geometrical instability of thin film-substrate systems through CGS interferometry. Journal of the Mechanics and Physics of Solids, 2003, 51, 2191-2211.	2.3	52
174	Elastic criterion for dislocation nucleation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 25-30.	2.6	52
175	Fatigue crack growth behavior of aluminum alloy 2020 (Alî—¸Cuî—¸Liî—¸Mnî—¸Cd). Materials Science and Engineering, 1984, 64, 113-122.	0.1	50
176	Growth of cracks under far-field cyclic compressive loads: Numerical and experimental results. Engineering Fracture Mechanics, 1986, 23, 1097-1106.	2.0	50
177	Fracture toughness measurements in ceramics: Pre-cracking in cyclic compression. Journal of Materials Science, 1987, 22, 1271-1276.	1.7	50
178	Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads. Journal of Materials Science, 1992, 27, 5181-5191.	1.7	50
179	High-Temperature Crack Growth in Monolithic and SiCw-Reinforced Silicon Nitride under Static and Cyclic Loads. Journal of the American Ceramic Society, 1994, 77, 2985-2999.	1.9	50
180	Analysis of the impact of a sharp indenter. International Journal of Solids and Structures, 2002, 39, 281-295.	1.3	50

#	Article	IF	Citations
181	Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	50
182	Crack growth retardation due to micro-roughness: A mechanism for overload effects in fatigue. Scripta Metallurgica, 1982, 16, 995-999.	1.2	48
183	Tensile Fracture Toughness of Ceramic Materials: Effects of Dynamic Loading and Elevated Temperatures. Journal of the American Ceramic Society, 1990, 73, 2457-2466.	1.9	48
184	Modeling and design of multi-layered and graded materials. Progress in Materials Science, 1997, 42, 243-251.	16.0	48
185	Dynamic indentation for determining the strain rate sensitivity of metals. Journal of the Mechanics and Physics of Solids, 2003, 51, 1923-1938.	2.3	48
186	Patient-specific blood rheology in sickle-cell anaemia. Interface Focus, 2016, 6, 20150065.	1.5	47
187	Thermoelastic analysis of periodic thin lines deposited on a substrate. Journal of the Mechanics and Physics of Solids, 1999, 47, 1113-1130.	2.3	46
188	Mechanical and electrical responses of piezoelectric solids to conical indentation. Journal of Applied Physics, 2000, 87, 8451-8456.	1.1	46
189	Steady-state frictional sliding contact on surfaces of plastically graded materials. Acta Materialia, 2009, 57, 511-524.	3.8	46
190	Fatigue crack propagation in oil environmentsâ€"l. Crack growth behavior in silicone and paraffin oils. Acta Metallurgica, 1985, 33, 105-116.	2.1	45
191	Elastoplastic analysis of thermal cycling: Ceramic particles in a metallic matrix. Journal of the Mechanics and Physics of Solids, 1995, 43, 1639-1671.	2.3	45
192	Fracture of Si3N4-SiC Whisker Composites under Cyclic Loads. Journal of the American Ceramic Society, 1988, 71, C-158-C-161.	1.9	44
193	Deformation, structural changes and damage evolution in nanotwinned copper under repeated frictional contact sliding. Acta Materialia, 2011, 59, 7311-7324.	3.8	44
194	Moving Toward Global Science. Science, 2011, 333, 802-802.	6.0	44
195	Sliding of coherent twin boundaries. Nature Communications, 2017, 8, 1108.	5.8	44
196	Mechanical fatigue of human red blood cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19828-19834.	3.3	44
197	Instrumented spherical micro-indentation of plasma-sprayed coatings. Materials Science & Description of Plasma Science & Descr	2.6	43
198	Anisotropic light scattering of individual sickle red blood cells. Journal of Biomedical Optics, 2012, 17, 040501.	1.4	43

#	Article	IF	Citations
199	Crack growth in transforming ceramics under cyclic tensile loads. Journal of Materials Science, 1989, 24, 1729-1738.	1.7	42
200	The bauschinger effect in whisker-reinforced metal-matrix composites. Scripta Metallurgica Et Materialia, 1990, 24, 1203-1208.	1.0	42
201	Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene. Journal of Orthopaedic Research, 1995, 13, 143-146.	1.2	42
202	Influence of plastic deformation on hydrogen transport in 2 Cr-1Mo steel. Scripta Metallurgica, 1982, 16, 455-459.	1.2	41
203	Effects of reinforcement orientation on the tensile response of metal-matrix composites. Materials Science & Science & Properties, Microstructure and Processing, 1995, 197, 1-10.	2.6	41
204	The role of adhesion in contact fatigue. Acta Materialia, 1999, 47, 4653-4664.	3.8	41
205	Effects of line and passivation geometry on curvature evolution during processing and thermal cycling in copper interconnect lines. Acta Materialia, 2000, 48, 3169-3175.	3.8	40
206	Nanoindentation of patterned metal lines on a Si substrate. Scripta Materialia, 2003, 48, 249-254.	2.6	40
207	Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13502-13507.	3.3	40
208	The fracture mechanics similitude concept: questions concerning its application to the behavior of short fatigue cracks. Materials Science and Engineering, 1983, 57, L27-L30.	0.1	38
209	Microstructural effects on quasi-static fracture mechanisms in Alî—,Li alloys: the role of crack geometry. Materials Science and Engineering, 1985, 72, 37-49.	0.1	38
210	Lithium-containing aluminum alloys: cyclic fracture. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1985, 16, 475-477.	1.4	38
211	Mode III fracture of 4340 steel: Effects of tempering temperature and fracture surface interference. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 3035-3044.	1.4	38
212	Stepwiseâ€Graded Si ₃ N ₄ â€"SiC Ceramics with Improved Wear Properties. Journal of the American Ceramic Society, 2002, 85, 2059-2064.	1.9	38
213	Crack initiation under far-field cyclic compression and the study of short fatigue cracks. Engineering Fracture Mechanics, 1986, 23, 953-964.	2.0	37
214	Steady-state creep of metal-ceramic multilayered materials. Acta Materialia, 1996, 44, 1337-1348.	3.8	37
215	Fatigue crack growth at arbitrary angles to bimaterial interfaces. Scripta Metallurgica Et Materialia, 1995, 33, 2007-2012.	1.0	36
216	Transformationâ€Toughened Ceramic Multilayers with Compositional Gradients. Journal of the American Ceramic Society, 1998, 81, 21-32.	1.9	36

#	Article	IF	Citations
217	Small Molecule Targeting Malaria Merozoite Surface Protein-1 (MSP-1) Prevents Host Invasion of Divergent Plasmodial Species. Journal of Infectious Diseases, 2014, 210, 1616-1626.	1.9	36
218	Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9527-9532.	3.3	36
219	Mechanics and micromechanisms of fatigue crack growth in brittle solids. International Journal of Fracture, 1990, 42, 41-56.	1.1	35
220	An experimental study of toughening and degradation due to microcracking in a ceramic composite. Acta Metallurgica Et Materialia, 1992, 40, 259-274.	1.9	35
221	Micromechanisms of Creep-Fatigue Crack Growth in a Silicide-Matrix Composite with SiC Particles. Journal of the American Ceramic Society, 1993, 76, 1953-1964.	1.9	35
222	Global challenges need global solutions. Nature, 2012, 490, 337-338.	13.7	35
223	On the influence of fatigue underloads on cyclic crack growth at low stress intensities. Materials Science and Engineering, 1981, 51, 61-69.	0.1	34
224	An experimental study of the dynamic mechanical properties of an Alî—,SiCw composite. Engineering Fracture Mechanics, 1988, 30, 295-315.	2.0	34
225	Febrile temperature leads to significant stiffening ofPlasmodium falciparumparasitized erythrocytes. American Journal of Physiology - Cell Physiology, 2009, 296, C59-C64.	2.1	33
226	Direct isolation of circulating extracellular vesicles from blood for vascular risk profiling in type 2 diabetes mellitus. Lab on A Chip, 2021, 21, 2511-2523.	3.1	33
227	Colloid model for atoms. Nature Materials, 2006, 5, 253-254.	13.3	32
228	Fatigue crack propagation along polymer-metal interfaces in microelectronic packages. IEEE Transactions on Components and Packaging Technologies, 1997, 20, 496-504.	0.7	29
229	Metallization of diamond. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24634-24639.	3.3	29
230	A new method for evaluating the plastic properties of materials through instrumented frictional sliding tests. Acta Materialia, 2010, 58, 6385-6392.	3.8	28
231	Room temperature fatigue crack growth in cemented carbides. Materials Science and Engineering, 1986, 83, L7-L10.	0.1	27
232	Electrical response during indentation of a 1-3 piezoelectric ceramic-polymer composite. Journal of Applied Physics, 1999, 86, 603-606.	1.1	27
233	Cytoadherence of erythrocytes invaded by Plasmodium falciparum: Quantitative contact-probing of a human malaria receptor. Acta Biomaterialia, 2013, 9, 6349-6359.	4.1	27
234	De Novo Generated Human Red Blood Cells in Humanized Mice Support Plasmodium falciparum Infection. PLoS ONE, 2015, 10, e0129825.	1.1	27

#	Article	IF	CITATIONS
235	Dynamic observation of Al thin films plastically strained in a TEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 463-467.	2.6	26
236	Microstructural effects on ambient and elevated temperature fatigue crack growth in titanium aluminide intermetallics. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 817-828.	1.4	25
237	Analysis of size-dependent slip transfer and inter-twin flow stress in a nanotwinned fcc metal. Acta Materialia, 2014, 67, 409-417.	3.8	25
238	Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Computational Biology, 2017, 13, e1005426.	1.5	24
239	A theory for creep by interfacial flaw growth in ceramics and ceramic composites. Acta Metallurgica Et Materialia, 1990, 38, 55-68.	1.9	23
240	Controlled molecular self-assembly of complex three-dimensional structures in soft materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 70-74.	3.3	23
241	Laser linking of metal interconnects: analysis and design considerations. IEEE Transactions on Electron Devices, 1996, 43, 402-410.	1.6	21
242	Digital printing of shape-morphing natural materials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	21
243	Fatigue crack growth in polymers subjected to fully compressive cyclic loads. Journal of Materials Science, 1992, 27, 1608-1616.	1.7	20
244	Cyclic near-tip fields for fatigue cracks along metal-metal and metal-ceramic interfaces. Acta Metallurgica Et Materialia, 1993, 41, 2317-2335.	1.9	19
245	Repeated frictional sliding properties of copper containing nanoscale twins. Scripta Materialia, 2012, 66, 849-853.	2.6	19
246	An Experimental Investigation of Fretting Fatigue with Spherical Contact in 7075-T6 Aluminum Alloy. , 2000, , 213-227.		19
247	THE EFFECT OF ENVIRONMENT ON FATIGUE CRACK GROWTH BEHAVIOR OF 2021 ALUMINUM ALLOY. Fatigue and Fracture of Engineering Materials and Structures, 1982, 5, 133-150.	1.7	18
248	Cyclic stress fields ahead of tension fatigue cracks in amorphous polymers. Polymer, 1994, 35, 3221-3229.	1.8	18
249	<i>In situ</i> transmission electron microscopy investigation of threading dislocation motion in passivated thin aluminum films. Journal of Materials Research, 1999, 14, 4673-4676.	1.2	18
250	Effects of sulfur on the fatigue and fracture resistance of interfaces between Î ³ -Ni(Cr) and α-Al2O3. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1977-1983.	1.1	18
251	Fracture toughness and fatigue crack growth behaviour of an Al2O3-SiC composite. Journal of Materials Science, 1988, 23, 3206-3213.	1.7	17
252	Surface film technique for crack length measurement in nonconductive brittle materials: Calibration and evaluation. Engineering Fracture Mechanics, 1991, 39, 629-640.	2.0	17

#	Article	IF	Citations
253	Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass. Npj Computational Materials, 2021, 7, .	3.5	17
254	On the relationship between crack initiation toughness and crack growth toughness. Materials Science and Engineering, 1986, 79, 183-190.	0.1	15
255	Effect of Carbon Addition on Elevated Temperature Crack Growth Resistance in (Mo,W)Si2-SiCp Composite. Journal of the American Ceramic Society, 1994, 77, 2681-2688.	1.9	15
256	Further remarks on the micromechanisms of fatigue crack growth retardation following overloads. Engineering Fracture Mechanics, 1985, 21, 1169-1170.	2.0	14
257	Interface cracks in layered materials subjected to a uniform temperature change. International Journal of Fracture, 2001, 110, 325-349.	1.1	14
258	Effects of residual stresses in fracture toughness testing of hard metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1988, 105-106, 383-387.	2.6	13
259	Large deformation of thin films and layered flat panels: effects of gravity. Acta Materialia, 2001, 49, 3671-3688.	3.8	12
260	Combined mode I-mode II and mode I-mode III fracture of brittle materials. Scripta Metallurgica Et Materialia, 1991, 25, 991-996.	1.0	11
261	Recommendations on modeling polyphase plasticity: conclusions of panel discussions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 175, 1-5.	2.6	11
262	Fatigue crack growth in unidirectional graphite-epoxy composites under cyclic compression. Journal of Materials Science Letters, 1992, 11, 1356-1360.	0.5	10
263	Issues in the finite element modeling of polyphase plasticity. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 1994, 175, 43-48.	2.6	10
264	Grain morphology, texture, and microhardness gradients in aluminum diffusion-bonded to aluminum oxide. Acta Materialia, 1999, 47, 501-515.	3.8	10
265	Cultivating Global Science. Science, 2012, 336, 959-959.	6.0	10
266	Mixed-mode inelastic crack-tip fields: Homogeneous solids and bimaterial interfaces. Scripta Metallurgica Et Materialia, 1991, 25, 1017-1022.	1.0	9
267	The failure of hard materials in cyclic compression: Theory, experiments and applications. Materials Science & Science & Processing A: Structural Materials: Properties, Microstructure and Processing, 1988, 105-106, 323-329.	2.6	8
268	Effects of anisotropy and slip geometry on fatigue fracture of Cu/sapphire bicrystals. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 314, 55-66.	2.6	8
269	On the contrast between mode I and mode III fatigue crack propagation under variable-amplitude loading conditions. Materials Science and Engineering, 1983, 59, L1-L5.	0.1	7
270	Tensile Fracture Toughness Measurements in Ceramics. Journal of the American Ceramic Society, 1987, 70, C-41-C-43.	1.9	7

#	Article	IF	CITATIONS
271	Recyclable and Reusable Natural Plantâ∈Based Paper for Repeated Digital Printing and Unprinting. Advanced Materials, 2022, 34, e2109367.	11.1	7
272	Torsional fracture of fatigue pre-cracked ceramic rods. Journal of Materials Science, 1987, 22, 2927-2932.	1.7	6
273	Plantâ€Based Substrate Materials for Flexible Green Electronics. Advanced Materials Technologies, 2022, 7, .	3.0	5
274	Forming of Ceramics during Firing without the Application of External Pressure. Journal of the American Ceramic Society, 1999, 82, 1401-1408.	1.9	4
275	Onset of plastic yielding in thin metal lines deposited on substrates. Scripta Materialia, 1999, 41, 297-304. Simulation of the Elasto–Plastic Deformations in Compositionally Graded Metal–Ceramic Structures:	2.6	3
276	Mean–Field and Unit Cell Approaches**This work was supported by the Grant DE-FG02-93ER45506 to MIT from the US Department of Energy. The post–doctoral study of EW at MIT was supported by an Erwin Schrödinger Fellowship from the AUSTRIAN NATIONAL SCIENCE FOUNDATION. HP's visit to MIT was supported by a scholarship for Overseas Scientific Study from the AUSTRIAN FEDERAL MINISTRY OF SCIENCE, TRANSPORT AND ART, 1997, , 75-80.		3
277	Parametric study of the volume fraction of fibers in 1–3 PZT/Polyurethane piezoelectric composites during indentation. Ferroelectrics, 2001, 255, 1-12.	0.3	2
278	Continuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages ofPlasmodium falciparummalaria parasite. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	2
279	Computational Modeling of the Micropipette Aspiration of Malaria Infected Erythrocytes. IFMBE Proceedings, 2009, , 1788-1791.	0.2	2
280	Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles. Placenta, 2022, 121, 14-22.	0.7	2
281	Introduction to the viewpoint set on mixed-mode fracture. Scripta Metallurgica Et Materialia, 1991, 25, 981-983.	1.0	1
282	Simulation of nanoindentation via interatomic potential finite element method., 2003,, 795-799.		1
283	Mechanical Response of Rat Cortical Neurons: AFM Indentations and Preliminary Modeling. , 2009, , .		1
284	Fatigue crack nucleation in metallic materials. , 1999, , 17-28.		1
285	Special Issue Devoted to the Proceedings of the International Symposium on Micromechanics of Ceramics and Ceramic Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 1993, 115, 227-227.	0.8	0
286	The influence of solid-state and liquid-phase bonding on fatigue at Al/Al2O3 interfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 763-769.	1.1	0
287	Indentation of Piezoelectric Ceramics: Theory, Experiments and Applications. Materials Research Society Symposia Proceedings, 1999, 604, 51.	0.1	0
288	Subra suresh discusses strategies to "Sustain the U.S. Innovation Engine― Jom, 2011, 63, 13-16.	0.9	0

#	Article	IF	CITATIONS
289	Defect Nucleation. Solid Mechanics and Its Applications, 2004, , 203-211.	0.1	0
290	Modeling and experimental studies on fretting fatigue. , 1999, , 355-359.		0