Eugene Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9820540/publications.pdf

Version: 2024-02-01

46918 56606 100 11,638 47 83 citations h-index g-index papers 111 111 111 9202 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews, 2008, 32, 723-735.	3.9	1,331
2	The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 2007, 5, 355-362.	13.6	1,257
3	Commensal bacteria play a role in mating preference of <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20051-20056.	3.3	752
4	Natural roles of biosurfactants. Minireview. Environmental Microbiology, 2001, 3, 229-236.	1.8	640
5	The Coral Probiotic Hypothesis. Environmental Microbiology, 2006, 8, 2068-2073.	1.8	545
6	Coral Disease, Environmental Drivers, and the Balance Between Coral and Microbial Associates. Oceanography, 2007, 20, 172-195.	0.5	392
7	Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. MSystems, 2016, 1, .	1.7	388
8	Temperature-Regulated Bleaching and Lysis of the Coral Pocillopora damicornis by the Novel Pathogen Vibrio corallilyticus. Applied and Environmental Microbiology, 2003, 69, 4236-4242.	1.4	360
9	Microbial disease and the coral holobiont. Trends in Microbiology, 2009, 17, 554-562.	3.5	360
10	Microbes Drive Evolution of Animals and Plants: the Hologenome Concept. MBio, 2016, 7, e01395.	1.8	358
11	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.	4.9	326
12	Microbial diseases of corals and global warming. Environmental Microbiology, 2002, 4, 318-326.	1.8	314
13	Bacteria Associated with Mucus and Tissues of the Coral Oculina patagonica in Summer and Winter. Applied and Environmental Microbiology, 2006, 72, 5254-5259.	1.4	240
14	Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology, 2014, 27, 191-194.	3.3	232
15	The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environmental Microbiology, 2009, 11, 2959-2962.	1.8	176
16	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
17	TheVibrio shiloi/Oculina patagonicaModel System of Coral Bleaching. Annual Review of Microbiology, 2004, 58, 143-159.	2.9	168
18	Microbial Degradation of Crude Oil: Factors Affecting the Dispersion in Sea Water by Mixed and Pure Cultures. Applied Microbiology, 1972, 24, 363-368.	0.6	155

#	Article	IF	CITATIONS
19	Antimicrobial properties of resident coral mucus bacteria of <i>Oculina patagonica</i> FEMS Microbiology Letters, 2009, 292, 210-215.	0.7	154
20	The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environmental Microbiology, 2003, 5, 250-255.	1.8	149
21	Microbial Surfactants. Critical Reviews in Biotechnology, 1985, 3, 109-132.	5.1	134
22	Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution. Biological Theory, 2018, 13, 44-65.	0.8	134
23	Petroleum bioremediation ? a multiphase problem. Biodegradation, 1992, 3, 337-350.	1.5	133
24	The evolution of animals and plants via symbiosis with microorganisms. Environmental Microbiology Reports, 2010, 2, 500-506.	1.0	133
25	Bioemulsans: microbial polymeric emulsifiers. Current Opinion in Biotechnology, 1997, 8, 313-316.	3.3	127
26	Emulsifying Activities of Purified Alasan Proteins from Acinetobacter radioresistens KA53. Applied and Environmental Microbiology, 2001, 67, 1102-1106.	1.4	126
27	Exopolysaccharide Distribution of and Bioemulsifier Production by <i>Acinetobacter calcoaceticus</i> BD4 and BD413. Applied and Environmental Microbiology, 1982, 44, 1335-1341.	1.4	124
28	Microbial Degradation of Crude Oil: Factors Affecting the Dispersion in Sea Water by Mixed and Pure Cultures. Applied Microbiology, 1972, 24, 363-368.	0.6	122
29	The role of microorganisms in coral bleaching. ISME Journal, 2009, 3, 139-146.	4.4	111
30	Properties of hydrocarbon-in-water emulsions stabilized byAcinetobacter RAG-1 emulsan. Biotechnology and Bioengineering, 1982, 24, 281-292.	1.7	110
31	Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi. Environmental Microbiology, 1999, 1, 223-229.	1.8	105
32	Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiology Letters, 2001, 199, 33-37.	0.7	101
33	Proline-Rich Peptide from the Coral Pathogen Vibrio shiloi That Inhibits Photosynthesis of Zooxanthellae. Applied and Environmental Microbiology, 2001, 67, 1536-1541.	1.4	95
34	Emulsifier production by Acinetobacter calcoaceticus strains. Current Microbiology, 1983, 9, 309-313.	1.0	93
35	Antimicrobial activity of Red Sea corals. Marine Biology, 2006, 149, 357-363.	0.7	89
36	Superoxide Dismutase Is a Virulence Factor Produced by the Coral Bleaching Pathogen Vibrio shiloi. Current Microbiology, 2003, 46, 418-422.	1.0	85

#	Article	IF	CITATIONS
37	The Active Component of the Bioemulsifier Alasan from Acinetobacter radioresistens KA53 Is an OmpA-Like Protein. Journal of Bacteriology, 2002, 184, 165-170.	1.0	83
38	Symbiotic bacteria are responsible for diet-induced mating preference in <i>Drosophila melanogaster</i> , providing support for the hologenome concept of evolution. Gut Microbes, 2011, 2, 190-192.	4.3	82
39	Phage Therapy of Coral White Plague Disease: Properties of Phage BA3. Current Microbiology, 2009, 58, 139-145.	1.0	67
40	Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. FEBS Journal, 1985, 152, 453-458.	0.2	65
41	Phage therapy treatment of the coral pathogen <i><scp>V</scp>ibrio corallilyticus</i> . MicrobiologyOpen, 2013, 2, 64-74.	1.2	64
42	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		58
43	Uranium binding by emulsan and emulsanosols. Biotechnology and Bioengineering, 1983, 25, 1725-1735.	1.7	53
44	Bacterial Growth on Coral Mucus. Current Microbiology, 2008, 56, 481-488.	1.0	53
45	Delignification of wood pulp by a thermostable xylanase from Bacillus stearothermophilus strain T-6. Biodegradation, 1992, 3, 207-218.	1.5	52
46	The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environmental Microbiology, 2006, 8, 1026-1032.	1.8	52
47	Bacteria Associated with the Bleached and Cave Coral Oculina patagonica. Microbial Ecology, 2008, 55, 523-529.	1.4	52
48	Role of Flagella in Virulence of the Coral Pathogen <i>Vibrio corallilyticus</i> Environmental Microbiology, 2009, 75, 5704-5707.	1.4	51
49	Chemical warfare in the sea: The search for antibiotics from Red Sea corals and sponges. Pure and Applied Chemistry, 2009, 81, 1113-1121.	0.9	39
50	Aspartokinase Activity and the Developmental Cycle of <i>Myxococcus xanthus</i> . Journal of Bacteriology, 1973, 115, 29-34.	1.0	34
51	Interactions of bacteria with cadmium. Biodegradation, 1992, 3, 161-170.	1.5	30
52	Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus The EMBL accession number for the sequence reported in this paper is AJ132503 Microbiology (United Kingdom), 1999, 145, 3059-3067.	0.7	29
53	Petroleum Bioremediation in Seawater Using Guano as the Fertilizer. Bioremediation Journal, 2006, 10, 83-91.	1.0	28
54	Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiology Letters, 2009, 295, 103-109.	0.7	28

#	Article	IF	Citations
55	Structure-function studies of the recombinant protein bioemulsifier AlnA. Environmental Microbiology, 2002, 4, 257-261.	1.8	27
56	The phageâ€driven microbial loop in petroleum bioremediation. Microbial Biotechnology, 2010, 3, 467-472.	2.0	27
57	Do microbiotas warm their hosts?. Gut Microbes, 2016, 7, 283-285.	4.3	24
58	Aspartokinase of <i>Myxococcus xanthus</i> : "Feedback Stimulation―by Required Amino Acids. Journal of Bacteriology, 1973, 115, 23-28.	1.0	23
59	Fish skin bacteria: Production of friction-reducing polymers. Microbial Ecology, 1989, 17, 27-38.	1.4	20
60	Microbial Diseases of Corals: Pathology and Ecology. , 2011, , 451-464.		19
61	Microbial-driven genetic variation in holobionts. FEMS Microbiology Reviews, 2021, 45, .	3.9	19
62	Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber. FEMS Microbiology Letters, 2000, 192, 97-100.	0.7	18
63	Genome analysis of the coral bleaching pathogen Vibrio shiloi. Archives of Microbiology, 2008, 190, 185-194.	1.0	18
64	The hologenome theory disregards the coral holobiont: reply from Rosenberg et al Nature Reviews Microbiology, 2007, 5, 826-826.	13.6	17
65	Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms, 2022, 10, 70.	1.6	17
66	Production and Secretion of the Polysaccharide Biodispersan of <i>Acinetobacter calcoaceticus</i> A2 in Protein Secretion Mutants. Applied and Environmental Microbiology, 1994, 60, 4642-4645.	1.4	16
67	The Hologenome Concept of Evolution: Medical Implications. Rambam Maimonides Medical Journal, 2019, 10, e0005.	0.4	16
68	The Bacterial Disease Hypothesis of Coral Bleaching. , 2004, , 445-461.		15
69	Identification of outer membrane proteins with emulsifying activity by prediction of \hat{l}^2 -barrel regions. Journal of Microbiological Methods, 2009, 76, 52-57.	0.7	14
70	Clonal Plants as Meta-Holobionts. MSystems, 2019, 4, .	1.7	13
71	Healthy corals maintain $\langle i \rangle Vibrio \langle i \rangle$ in the VBNC state. Environmental Microbiology Reports, 2010, 2, 116-119.	1.0	11
72	Role of Microorganisms in Adaptation, Development, and Evolution of Animals and Plants: The Hologenome Concept., 2013,, 347-358.		11

#	Article	IF	CITATIONS
73	Molecular analysis of the DNA gyrB gene from Myxococcus xanthus. Microbiology (United Kingdom), 1998, 144, 1641-1647.	0.7	10
74	Diet-induced mating preference in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2153.	3.3	10
75	Cadmium binding by bacteria: screening and characterization of new isolates and mutants. FEMS Microbiology Letters, 1996, 135, 191-194.	0.7	7
76	Temperature-Regulated Bleaching and Tissue Lysis of Pocillopora damicornis by the Novel Pathogen Vibrio coralliilyticus., 2004,, 301-324.		7
77	Scaling-up of process for production of antibiotic of Myxococcus xanthus TA. Journal of Applied Chemistry and Biotechnology, 1976, 26, 160-166.	0.0	6
78	Colonial differentiation and hydrophobicity of aVibrio sp Current Microbiology, 1989, 18, 331-334.	1.0	6
79	Bacterial Bleaching of Corals Leads to Hologenome Concept. Microbe Magazine, 2016, 11, 27-31.	0.4	6
80	Coral microbiology. Microbial Biotechnology, 2009, 2, 147-147.	2.0	5
81	Scaling-up of process for production of antibiotic of myxococcus xanthus TA. Journal of Applied Chemistry and Biotechnology, 2007, 26, 160-166.	0.0	4
82	Prebiotics and Probiotics within the Framework of the Hologenome Concept. Journal of Microbial $\&$ Biochemical Technology, 2011, s1, .	0.2	4
83	Solubilization of phenanthrene by recombinant protein bioemulsans. Biochemical Engineering Journal, 2003, 16, 169-174.	1.8	2
84	The Hologenome Concept., 2012,, 323-340.		2
85	Bioremediation. , 2013, , 295-307.		2
86	The Evolution of Holobionts. , 2013, , 109-128.		2
87	Introduction: Symbioses and the Hologenome Concept. , 2013, , 1-8.		2
88	Vibrios in Coral Health and Disease. , 0, , 231-238.		2
89	Transmission of Hologenomes Between Generations: Mothers Matter Most. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 161-194.	0.2	1
90	Holistic Fitness: Microbiomes are Part of the Holobiont's Fitness. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 101-160.	0.2	1

#	Article	IF	CITATIONS
91	Evolution of Holobionts: The Hologenome Concept. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 317-352.	0.2	1
92	A NusG-like transcription anti-terminator is involved in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus. , 0 , .		1
93	Composition of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 15-55.	0.2	O
94	Microbiomes: Some Philosophical and Sociological Implications. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 413-431.	0.2	0
95	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.2	О
96	Eukaryotic Microorganisms are Part of Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 195-229.	0.2	0
97	Microbiomes in Medicine and Agriculture. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 353-412.	0.2	О
98	Prebiotics, Probiotics, Synbiotics, and Phage Therapy., 2013, , 151-167.		0
99	Pathogens as Symbionts. , 2013, , 129-149.		0
100	BIOTREATMENT OF PETROLEUM CONTAMINATION IN OPEN SYSTEMS. International Oil Spill Conference Proceedings, 1995, 1995, 891-892.	0.1	O