Linzhao Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/982003/publications.pdf Version: 2024-02-01

LINZHAO CHENC

#	Article	IF	CITATIONS
1	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
2	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
3	Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 2011, 21, 518-529.	12.0	420
4	Serum IgA, IgM, and IgG responses in COVID-19. Cellular and Molecular Immunology, 2020, 17, 773-775.	10.5	379
5	Human Adult Marrow Cells Support Prolonged Expansion of Human Embryonic Stem Cells in Culture. Stem Cells, 2003, 21, 131-142.	3.2	317
6	Whole-Genome Sequencing Analysis Reveals High Specificity of CRISPR/Cas9 and TALEN-Based Genome Editing in Human iPSCs. Cell Stem Cell, 2014, 15, 12-13.	11.1	315
7	Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood, 2011, 118, 4599-4608.	1.4	285
8	Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts. Stem Cells, 2008, 26, 1998-2005.	3.2	266
9	Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation. Stem Cells, 2015, 33, 1470-1479.	3.2	164
10	Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs. Molecular Therapy, 2015, 23, 570-577.	8.2	164
11	Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nature Protocols, 2012, 7, 2013-2021.	12.0	142
12	Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials, 2019, 190-191, 24-37.	11.4	141
13	Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nature Methods, 2022, 19, 662-670.	19.0	130
14	Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Research, 2013, 11, 1103-1116.	0.7	121
15	Highly Purified Human Extracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells. Stem Cells, 2019, 37, 779-790.	3.2	111
16	A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach. Stem Cells Translational Medicine, 2015, 4, 320-332.	3.3	71
17	A Universal Approach to Correct Various <i>HBB</i> Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Translational Medicine, 2018, 7, 87-97.	3.3	64
18	Early Intervention for Spinal Cord Injury with Human Induced Pluripotent Stem Cells Oligodendrocyte Progenitors. PLoS ONE, 2015, 10, e0116933.	2.5	61

LINZHAO CHENG

#	Article	IF	CITATIONS
19	Inducible and Reversible Transgene Expression in Human Stem Cells After Efficient and Stable Gene Transfer. Stem Cells, 2007, 25, 779-789.	3.2	58
20	Efficient Generation of Megakaryocytes From Human Induced Pluripotent Stem Cells Using Food and Drug Administration-Approved Pharmacological Reagents. Stem Cells Translational Medicine, 2015, 4, 309-319.	3.3	53
21	The role of mutations associated with familial neurodegenerative disorders on blood–brain barrier function in an iPSC model. Fluids and Barriers of the CNS, 2019, 16, 20.	5.0	51
22	Extensive Ex Vivo Expansion of Functional Human Erythroid Precursors Established From Umbilical Cord Blood Cells by Defined Factors. Molecular Therapy, 2014, 22, 451-463.	8.2	45
23	Concise Review: Stem Cell-Based Approaches to Red Blood Cell Production for Transfusion. Stem Cells Translational Medicine, 2014, 3, 346-355.	3.3	44
24	Highly efficient magnetic labelling allows MRI tracking of the homing of stem cellâ€derived extracellular vesicles following systemic delivery. Journal of Extracellular Vesicles, 2021, 10, e12054.	12.2	43
25	Whole-Genome Sequencing Identifies Genetic Variances in Culture-Expanded Human Mesenchymal Stem Cells. Stem Cell Reports, 2014, 3, 227-233.	4.8	42
26	High Levels of Transgene Expression Following Transduction of Long-Term NOD/SCID-Repopulating Human Cells with a Modified Lentiviral Vector. Stem Cells, 2001, 19, 247-259.	3.2	41
27	Concise Review: Human Cell Engineering: Cellular Reprogramming and Genome Editing. Stem Cells, 2012, 30, 75-81.	3.2	36
28	Differential Sensitivity to JAK Inhibitory Drugs by Isogenic Human Erythroblasts and Hematopoietic Progenitors Generated from Patient-Specific Induced Pluripotent Stem Cells. Stem Cells, 2014, 32, 269-278.	3.2	36
29	Efficient Derivation and Genetic Modifications of Human Pluripotent Stem Cells on Engineered Human Feeder Cell Lines. Stem Cells and Development, 2012, 21, 2298-2311.	2.1	29
30	iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS ONE, 2020, 15, e0233980.	2.5	28
31	Heterozygous IDH1R132H/WT created by "single base editing―inhibits human astroglial cell growth by downregulating YAP. Oncogene, 2018, 37, 5160-5174.	5.9	27
32	Decline of SARS-CoV-2-specific IgG, IgM and IgA in convalescent COVID-19 patients within 100 days after hospital discharge. Science China Life Sciences, 2021, 64, 482-485.	4.9	27
33	Questions about NgAgo. Protein and Cell, 2016, 7, 913-915.	11.0	24
34	Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Scientific Reports, 2013, 3, 2376.	3.3	21
35	Transcriptional profile of platelets and iPSC-derived megakaryocytes from whole-genome and RNA sequencing. Blood, 2021, 137, 959-968.	1.4	21
36	Molecular Imaging and Stem Cell Research. Molecular Imaging, 2011, 10, 7290.2010.00046.	1.4	19

LINZHAO CHENG

#	Article	IF	CITATIONS
37	More new lines of human parthenogenetic embryonic stem cells. Cell Research, 2008, 18, 215-217.	12.0	17
38	Sequential cellular niches control the generation of enucleated erythrocytes from human pluripotent stem cells. Haematologica, 2020, 105, e48-e51.	3.5	17
39	Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Research, 2018, 29, 6-14.	0.7	15
40	HIF2A gain-of-function mutation modulates the stiffness of smooth muscle cells and compromises vascular mechanics. IScience, 2021, 24, 102246.	4.1	14
41	A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to complement-mediated toxicity in a human iPSC model. PLoS ONE, 2017, 12, e0174074.	2.5	13
42	BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Molecular Therapy, 2021, 29, 1918-1932.	8.2	11
43	Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. Journal of Cellular Physiology, 2016, 231, 1065-1076.	4.1	10
44	Human Forebrain Organoids from Induced Pluripotent Stem Cells: A Novel Approach to Model Repair of Ionizing Radiation-Induced DNA Damage in Human Neurons. Radiation Research, 2020, 194, 191.	1.5	10
45	Zinc fingers hit off target. Nature Medicine, 2011, 17, 1192-1193.	30.7	9
46	Integrity of Induced Pluripotent Stem Cell (iPSC) Derived Megakaryocytes as Assessed by Genetic and Transcriptomic Analysis. PLoS ONE, 2017, 12, e0167794.	2.5	9
47	Erythropoietic properties of human induced pluripotent stem cellsâ€derived red blood cells in immunodeficient mice. American Journal of Hematology, 2022, 97, 194-202.	4.1	8
48	Gene and protein expression in human megakaryocytes derived from induced pluripotent stem cells. Journal of Thrombosis and Haemostasis, 2021, 19, 1783-1799.	3.8	6
49	Generation and application of human iPS cells. Science Bulletin, 2009, 54, 9-13.	1.7	5
50	Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086819.	0.3	5
51	Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Research, 2016, 17, 296-305.	0.7	5
52	Generation and characterization of a novel human iPSC line from a resilient Alzheimer's disease patient. Stem Cell Research, 2020, 48, 101979.	0.7	4
53	Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Research, 2017, 18, 57-59.	0.7	3
54	Reprogramming somatic cells without fusion or ethical confusion. Regenerative Medicine, 2006, 1, 837-840.	1.7	1

LINZHAO CHENG

#	Article	IF	CITATIONS
55	A Method for Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, 2016, pdb.prot090217.	0.3	1
56	Integration-free erythroblast-derived human induced pluripotent stem cells (iPSCs) from an individual with Ataxia-Telangiectasia (A-T). Stem Cell Research, 2016, 17, 205-207.	0.7	1
57	The HMGA1a-STAT3 axis: an "Achilles Heel―for Hematopoietic Malignancies Overexpressing HMGA1a?. Blood, 2008, 112, 3810-3810.	1.4	1
58	Human IPS Cells Generated From Adult Peripheral Blood Cells and Purified CD34+ Cells by a Non-Integrating Plasmid Blood, 2010, 116, 1589-1589.	1.4	1
59	A Germline Mutation in ERBB3 Predisposes to Inherited Erythroid Myelodysplasia/Erythroleukemia. Blood, 2015, 126, 4105-4105.	1.4	1
60	Generation, Characterization and Genetic Modification of Human iPSCs Containing Calr, MPL and JAK2 Mutations Found in MPN Patients. Blood, 2016, 128, 3139-3139.	1.4	1
61	Human NOTCH4 Is a Key Target of RUNX1 in Megakaryocytic Differentiation. Blood, 2016, 128, 425-425.	1.4	1
62	The VWRPY Domain Is Essential for RUNX1 Function in Hematopoietic Progenitor Cell Maturation and Megakaryocyte Differentiation. Blood, 2018, 132, 1319-1319.	1.4	1
63	Developmental Potentials of Human Embryonic Stem Cells Lacking PIG-A and GPI-Anchored Proteins Blood, 2006, 108, 1314-1314.	1.4	0
64	Distinct Induced Pluripotent Stem Cell Clones with Somatic Mutations Prepared From PV Patients. Blood, 2011, 118, 2826-2826.	1.4	0
65	Extensive Ex Vivo Expansion of Functional Human Erythroid Precursor Cells From Reprogrammed Post-Natal Blood Mononuclear Cells by Defined Factors. Blood, 2012, 120, 975-975.	1.4	0
66	Generation of GPI Anchor Deficient Blood Cells From Human iPSCs Blood, 2012, 120, 2358-2358.	1.4	0
67	FDA-Approved Pharmacological Agents, Romiplostium and Oprelvekin, Synergistically Promote Megakaryocytic Differentiation From Human iPSCs In a Chemically Defined System. Blood, 2013, 122, 1208-1208.	1.4	0
68	25: INDUCED PLURIPOTENT STEM CELLS AND GENE TARGETING FOR REGENERATIVE MEDICINE. ICP Textbooks in Biomolecular Sciences, 2014, , 477-490.	0.1	0
69	The Roles of RUNX1 in Human Hematopoiesis and Megakaryopoiesis Revealed By Genome-Targeted Human iPSCs and an Improved Hematopoietic Differentiation Model. Blood, 2015, 126, 1167-1167.	1.4	0
70	INDUCED PLURIPOTENT STEM CELLS AND GENE TARGETING FOR REGENERATIVE MEDICINE. , 2019, , 549-562.		0
71	Characteristics of <i>in Vitro</i> Differentiated Erythrocytes Derived from Human <i>Bmi-1</i> Extensively Expanded Erythroblasts (E3). Blood, 2020, 136, 30-30.	1.4	0
72	Effective Erythropoiesis from Human iPSC-Derived RBC in Immunodeficient Mice. Blood, 2020, 136, 42-42.	1.4	0

#	Article	IF	CITATIONS
73	Efficient Enucleation and In Vivo Circulation of Differentiated Human Erythroblasts Derived from Peripheral Blood Mononuclear Cells after Extensive Expansion. Blood, 2020, 136, 23-24.	1.4	Ο
74	In memory of Hal E. Broxmeyer, a pluripotent scientist, pioneer, and mentor. Blood Science, 2022, 4, 1-4.	0.9	0