
Giovanni Pitari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	846
2	Multimodel ensemble simulations of present-day and near-future tropospheric ozone. Journal of Geophysical Research, 2006, 111, .	3.3	743
3	Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 2010, 44, 4678-4734.	1.9	565
4	Multimodel estimates of intercontinental sourceâ€receptor relationships for ozone pollution. Journal of Geophysical Research, 2009, 114, .	3.3	430
5	Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 2006, 111, .	3.3	414
6	The Global Atmospheric Environment for the Next Generation. Environmental Science & Technology, 2006, 40, 3586-3594.	4.6	338
7	Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	308
8	Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. Journal of Climate, 2010, 23, 5349-5374.	1.2	280
9	Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. Journal of Geophysical Research, 2010, 115, .	3.3	280
10	Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geoscientific Model Development, 2017, 10, 639-671.	1.3	277
11	Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. Journal of Geophysical Research, 2003, 108, .	3.3	258
12	Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. Journal of Geophysical Research, 2006, 111, .	3.3	254
13	Aviation radiative forcing in 2000: An update on IPCC (1999). Meteorologische Zeitschrift, 2005, 14, 555-561.	0.5	251
14	Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 2010, 10, 9451-9472.	1.9	215
15	Fresh air in the 21st century?. Geophysical Research Letters, 2003, 30, .	1.5	192
16	Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. Journal of Geophysical Research, 2010, 115, .	3.3	171
17	Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2014, 119, 2629-2653.	1.2	151
18	Review of the formulation of presentâ€generation stratospheric chemistry limate models and associated external forcings. Journal of Geophysical Research, 2010, 115, .	3.3	150

#	Article	IF	CITATIONS
19	Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmospheric Chemistry and Physics, 2018, 18, 8409-8438.	1.9	128
20	A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity. Journals of the Atmospheric Sciences, 2002, 59, 441-460.	0.6	96
21	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	1.9	94
22	An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmospheric Chemistry and Physics, 2014, 14, 2399-2417.	1.9	86
23	A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophysical Research Letters, 2008, 35, .	1.5	76
24	Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects. Atmospheric Chemistry and Physics, 2011, 11, 7533-7545.	1.9	75
25	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmospheric Chemistry and Physics, 2016, 16, 3525-3561.	1.9	75
26	Decline and recovery of total column ozone using a multimodel time series analysis. Journal of Geophysical Research, 2010, 115, .	3.3	74
27	Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis. Journal of Geophysical Research, 2010, 115, .	3.3	69
28	Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 2018, 9, 206.	5.8	69
29	Using transport diagnostics to understand chemistry climate model ozone simulations. Journal of Geophysical Research, 2011, 116, .	3.3	68
30	Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics. Journal of Geophysical Research, 2010, 115, .	3.3	67
31	Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. Journal of Geophysical Research, 2010, 115, .	3.3	66
32	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
33	A Numerical Study of the Possible Perturbation of Stratospheric Dynamics Due to Pinatubo Aerosols: Implications for Tracer Transport. Journals of the Atmospheric Sciences, 1993, 50, 2443-2461.	0.6	51
34	Chemistry limate model simulations of spring Antarctic ozone. Journal of Geophysical Research, 2010, 115, .	3.3	51
35	A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models. Geoscientific Model Development, 2015, 8, 43-49.	1.3	51
36	Revisiting the Mystery of Recent Stratospheric Temperature Trends. Geophysical Research Letters, 2018, 45, 9919-9933.	1.5	51

#	Article	IF	CITATIONS
37	Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmospheric Environment, 2014, 95, 468-479.	1.9	46
38	Sulfate geoengineering: aÂreview of the factors controlling the needed injection of sulfur dioxide. Atmospheric Chemistry and Physics, 2017, 17, 3879-3889.	1.9	44
39	Multimodel estimates of atmospheric lifetimes of longâ€lived ozoneâ€depleting substances: Present and future. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2555-2573.	1.2	42
40	The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison. Journal of Geophysical Research, 1998, 103, 1527-1547.	3.3	41
41	Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers. Natural Hazards and Earth System Sciences, 2002, 2, 91-108.	1.5	38
42	Evolution of surface ozone in central Italy based on observations and statistical model. Journal of Geophysical Research, 2007, 112, .	3.3	37
43	Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time. Atmosphere, 2016, 7, 75.	1.0	36
44	Stratospheric Injection of Brominated Very Shortâ€Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5690-5719.	1.2	36
45	Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmospheric Chemistry and Physics, 2018, 18, 2787-2808.	1.9	33
46	Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations. Atmospheric Chemistry and Physics, 2018, 18, 7217-7235.	1.9	32
47	Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models. Atmospheric Chemistry and Physics, 2018, 18, 6699-6720.	1.9	32
48	Comparison of recent modeled and observed trends in total column ozone. Journal of Geophysical Research, 2006, 111, .	3.3	31
49	The influence of mixing on the stratospheric age of air changes in the 21st century. Atmospheric Chemistry and Physics, 2019, 19, 921-940.	1.9	29
50	Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2017, 17, 11209-11226.	1.9	28
51	Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model. Atmospheric Chemistry and Physics, 2018, 18, 16155-16172.	1.9	27
52	The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models. Atmospheric Chemistry and Physics, 2019, 19, 11559-11586.	1.9	27
53	Deriving Global OH Abundance and Atmospheric Lifetimes for Longâ€Lived Gases: A Search for CH ₃ CCl ₃ Alternatives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,914.	1.2	26
54	The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmospheric Chemistry and Physics, 2010, 10, 9473-9486.	1.9	25

#	Article	IF	CITATIONS
55	Upper tropospheric ice sensitivity to sulfate geoengineering. Atmospheric Chemistry and Physics, 2018, 18, 14867-14887.	1.9	25
56	Direct Radiative Effect of Absorbing Aerosols: Sensitivity to Mixing State, Brown Carbon, and Soil Dust Refractive Index and Shape. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030967.	1.2	25
57	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	1.9	24
58	Sensitivity of stratospheric ozone to heterogeneous chemistry on sulfate aerosols. Geophysical Research Letters, 1991, 18, 833-836.	1.5	23
59	Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmospheric Chemistry and Physics, 2019, 19, 10087-10110.	1.9	22
60	Twoâ€dimensional tracer transport: Derivation of residual mean circulation and eddy transport tensor from a 3â€D model data set. Journal of Geophysical Research, 1985, 90, 8019-8032.	3.3	20
61	Model intercomparison of the transport of aircraft-like emissions from sub- and supersonic aircraft. Meteorologische Zeitschrift, 2002, 11, 151-159.	0.5	20
62	Observations and box model analysis of radon-222 in the atmospheric surface layer at L'Aquila, Italy: March 2009 case study. Environmental Earth Sciences, 2014, 71, 2353-2359.	1.3	20
63	Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species. Atmosphere, 2016, 7, 149.	1.0	20
64	Mitigation of Non-CO2 Aviation's Climate Impact by Changing Cruise Altitudes. Aerospace, 2021, 8, 36.	1.1	18
65	Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere. Atmosphere, 2016, 7, 85.	1.0	17
66	Impact of Coupled NOx/Aerosol Aircraft Emissions on Ozone Photochemistry and Radiative Forcing. Atmosphere, 2015, 6, 751-782.	1.0	16
67	Observations of surface radon in Central Italy. Environmental Geology, 2009, 58, 431-436.	1.2	13
68	A Simple Method to Account for Rayleigh Scattering Effects on Photodissociation Rates. Journals of the Atmospheric Sciences, 1979, 36, 1803-1811.	0.6	12
69	Desert dust transported over Europe: Lidar observations and model evaluation of the radiative impact. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2881-2898.	1.2	12
70	Wildfires impact on surface nitrogen oxides and ozone in Central Italy. Atmospheric Pollution Research, 2015, 6, 29-35.	1.8	10
71	A Modelling Study of the Impact of On-Road Diesel Emissions on Arctic Black Carbon and Solar Radiation Transfer. Atmosphere, 2015, 6, 318-340.	1.0	9
72	Present-day radiative effect from radiation-absorbing aerosols in snow. Atmospheric Chemistry and Physics, 2021, 21, 6875-6893.	1.9	9

#	Article	lF	CITATIONS
73	Global ozone depletion and the Antarctic ozone hole. Journal of Geophysical Research, 1992, 97, 8075-8082.	3.3	8
74	Climatic impact of future supersonic aircraft: role of water vapour and ozone feedback on circulation. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26, 571-576.	0.2	8
75	Aerosol Measurements in the Atmospheric Surface Layer at L'Aquila, Italy: Focus on Biogenic Primary Particles. Pure and Applied Geophysics, 2014, 171, 2425-2441.	0.8	8
76	A transformed Eulerian model to study possible effects of the El Chichón eruption on the stratospheric circulation. Journal of Geophysical Research, 1987, 92, 10961-10975.	3.3	7
77	Contribution to the ozone trend of heterogeneous reactions of ClONO ₂ on the sulfate aerosol layer. Geophysical Research Letters, 1993, 20, 2663-2666.	1.5	7
78	Radiative forcing from aircraft emissions of NOx: model calculations with CH4 surface flux boundary condition. Meteorologische Zeitschrift, 2017, 26, 663-687.	0.5	7
79	Seasonal and latitudinal distribution of trace gases in the stratosphere: Results from a 2D residual circulation model. Journal of Atmospheric Chemistry, 1987, 5, 255-289.	1.4	6
80	Radiative perturbation due to the eruption of El ChichÃ ³ n: Effects on ozone. Journal of Atmospheric and Solar-Terrestrial Physics, 1992, 54, 1081-1084.	0.9	6
81	Two-dimensional distributions of sulfur compounds in the troposphere: Implications for the atmospheric sulfur budget. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1985, 8, 655-679.	0.2	5
82	Ozone trend in the northern hemisphere: A numerical study. Journal of Geophysical Research, 1991, 96, 10931-10940.	3.3	5
83	Sulphate particles from subsonic aviation: impact on upper tropospheric and lower stratospheric ozone. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26, 563-569.	0.2	5
84	Aerosol measurements at L'Aquila EARLINET station in central Italy: Impact of local sources and large scale transport resolved by LIDAR. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 92, 116-123.	0.6	5
85	Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative. , 2019, 19, 10087-10110.		5
86	A Comparison of Lidar Data and Two-Dimensional Simulation of Dust Transport from the Eruption of El Chichón. Journals of the Atmospheric Sciences, 1988, 45, 1097-1109.	0.6	4
87	Odd nitrogen removal on background sulfate aerosols: Implications for the ozone hole. Geophysical Research Letters, 1991, 18, 1853-1856.	1.5	4
88	Dehydration in the antarctic stratosphere: Radiative effects. Geophysical Research Letters, 1992, 19, 585-588.	1.5	4
89	Seasonal variation of night-time accumulated Rn-222 in central Italy. Environmental Earth Sciences, 2015, 73, 8589-8597.	1.3	4
90	Aircraft induced effects on Arctic polar stratospheric cloud formation. Meteorologische Zeitschrift, 2002, 11, 207-214.	0.5	4

#	Article	IF	CITATIONS
91	An approach to sulfate geoengineering with surface emissions of carbonyl sulfide. Atmospheric Chemistry and Physics, 2022, 22, 5757-5773.	1.9	4
92	A two-dimensional photochemical model of the stratosphere with Rayleigh scattering. Pure and Applied Geophysics, 1980, 118, 1033-1051.	0.8	3
93	Stratospheric heating due to El chicon volcanic eruption: Preliminary results using a 3D model. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1985, 8, 680-697.	0.2	3
94	Stratospheric denitrification due to polar aerosol formation: Implications for a future atmosphere with increased CO2. Geophysical Research Letters, 1994, 21, 1791-1794.	1.5	3
95	A two-dimensional model of the distribution of trace gases in the stratosphere and troposphere. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1980, 3, 541-572.	0.2	2
96	Preliminary results and validation of a 2D model employing a residual circulation formalism. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1984, 7, 699-713.	0.2	2
97	A study of the global distribution of sulfate aerosols with a 2D model including microphysics. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 401-416.	0.2	2
98	Ground-based monitoring of pinatubo aerosols and ozone at L'Aquila, Italy. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 91-95.	0.2	2
99	The use of conservative coordinates for reconstruction techniques and for the development of a two-dimensional transport model. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 349-355.	0.2	1
100	Ground-based monitoring of Pinatubo aerosols and ozone at L'Aquila, Italy. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 97-101.	0.2	1
101	Deep convective transport in a two-dimensional model: Effects on lower stratospheric aerosols and ozone. Meteorologische Zeitschrift, 2002, 11, 187-196.	0.5	1
102	A study of the El Chichon perturbation in the stratospheric dynamics: results from a 3D model. Physica Scripta, 1988, 37, 466-468.	1.2	0
103	Polar stratospheric cloud formation and odd nitrogen chemistry in simulated antarctic conditions. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 489-500.	0.2	0
104	Constraints on the dynamical and chemical theories of the «Ozone Hole». Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 101-106.	0.2	0
105	On the role of water vapour in the heat balance of the antarctic lower stratosphere. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1991, 14, 315-318.	0.2	0
106	On the possible perturbation of stratospheric dynamics due to Pinatubo aerosols. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 485-489.	0.2	0
107	Impact of future supersonic aircraft on the distribution of stratospheric tracers: Chemical and dynamical perturbations. Meteorologische Zeitschrift, 2002, 11, 215-223.	0.5	0
108	The Ozone Depletion During 1992 and 1993: A Three-Dimensional Study. , 1996, , 199-210.		0