
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feasibility of Adsorption Kinetic Models to Study Carrier-Mediated Transport of Heavy Metal Ions in Emulsion Liquid Membranes. Membranes, 2022, 12, 66.	1.4	9
2	Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes. Membranes, 2022, 12, 562.	1.4	8
3	Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. International Journal of Environmental Research and Public Health, 2021, 18, 4036.	1.2	11
4	Comparison of two excilamps and two reactor configurations in the UV-H2O2 removal process of amaranth. Journal of Water Process Engineering, 2020, 33, 101051.	2.6	6
5	Developing the rate equations for two enzymatic Ping-Pong reactions in series: Application to the bio-synthesis of Bis(2-ethylhexyl) azelate. Biochemical Engineering Journal, 2020, 161, 107691.	1.8	8
6	Removal of Different Dye Solutions: A Comparison Study Using a Polyamide NF Membrane. Membranes, 2020, 10, 408.	1.4	30
7	Fluorescence analysis of Bisphenol A photolysis under exposure to excilamps. , 2019, , .		1
8	Behaviour of polysulfone ultrafiltration membrane for dyes removal. Water Science and Technology, 2018, 77, 2093-2100.	1.2	27
9	Kinetic Study of the Enzymatic Synthesis of 2-Phenylethyl Acetate in Discontinuous Tank Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 11280-11287.	1.8	8
10	Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chemical Engineering Research and Design, 2018, 138, 135-143.	2.7	18
11	Possible Uses for Sludge from Drinking Water Treatment Plants. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	37
12	Influence of Physicochemical Parameters of Organic Solutes on the Retention and Flux in a Nanofiltration Process. Chemical Engineering and Technology, 2016, 39, 1177-1184.	0.9	7
13	Kinetic Model for UV/H2O2 Degradation of 5-Methoxypsoralen. Russian Physics Journal, 2016, 59, 552-561.	0.2	1
14	Removal of anilinic compounds using the NF-97 membrane: Application of the solution-diffusion and SKK models. Separation Science and Technology, 2016, 51, 2429-2439.	1.3	6
15	Modelling and experimental checking of the influence of substrate concentration on the first order kinetic constant in photo-processes. Journal of Environmental Management, 2016, 183, 818-825.	3.8	13
16	Photodegradation of some Furocoumarins in Ethanol under UV Irradiation. Key Engineering Materials, 2016, 683, 402-405.	0.4	1
17	Development of a kinetic model for the UV/H2O2 photodegradation of 2,4-dichlorophenoxiacetic acid. Chemical Engineering Journal, 2015, 266, 356-367.	6.6	23
18	Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme® CalB lipase in a solvent-free system. Catalysis Today, 2015, 255, 49-53.	2.2	16

#	Article	IF	CITATIONS
19	Removal of 4-chloro-2-methylphenol from aqueous solutions by nanofiltration and reverse osmosis. Desalination and Water Treatment, 2015, 53, 1499-1505.	1.0	4
20	Behaviour of RO90 membrane on the removal of 4-nitrophenol and 4-nitroaniline by low pressure reverse osmosis. Journal of Water Process Engineering, 2015, 7, 169-175.	2.6	15
21	Photodegradation of 2-methyl-4-chlorophenol in a KrCl exciplex flow-through photoreactor: a kinetic study. Desalination and Water Treatment, 2015, 54, 1862-1871.	1.0	4
22	Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors. Environmental Technology (United Kingdom), 2014, 35, 1866-1873.	1.2	2
23	Polyamide nanofiltration membranes to remove aniline in aqueous solutions. Environmental Technology (United Kingdom), 2014, 35, 1175-1181.	1.2	13
24	Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochemical Engineering Journal, 2014, 84, 91-97.	1.8	24
25	Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes. Desalination, 2013, 315, 70-75.	4.0	40
26	Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane. Desalination and Water Treatment, 2013, 51, 2244-2252.	1.0	7
27	Toward Green Chemical Engineering. International Journal of Chemical Engineering, 2013, 2013, 1-3.	1.4	0
28	Testing aPseudomonas putidastrain for 4-chlorophenol degradation in the presence of glucose. Desalination and Water Treatment, 2012, 40, 33-37.	1.0	11
29	Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods. Environmental Technology (United Kingdom), 2012, 33, 1055-1064.	1.2	18
30	Screening of three commercial plant peroxidases for the removal of phenolic compounds in membrane bioreactors. Environmental Technology (United Kingdom), 2012, 33, 1071-1079.	1.2	6
31	Continuous tank reactors in series: an improved alternative in the removal of phenolic compounds with immobilized peroxidase. Environmental Technology (United Kingdom), 2012, 33, 103-111.	1.2	7
32	Removal of 4-chlorophenol in a continuous membrane bioreactor using different commercial peroxidases. Desalination and Water Treatment, 2012, 37, 97-107.	1.0	4
33	A new substrate and by-product kinetic model for the photodegradation of 4-chlorophenol with KrCl exciplex UV lamp and hydrogen peroxide. Chemical Engineering Journal, 2012, 187, 36-44.	6.6	13
34	A KrCl exciplex flow-through photoreactor for degrading 4-chlorophenol: Experimental and modelling. Applied Catalysis B: Environmental, 2012, 117-118, 194-203.	10.8	19
35	Photodegradation of congo red using XeBr, KrCl and Cl2 barrier discharge excilamps: A kinetics study. Desalination, 2011, 281, 364-371.	4.0	34
36	A diffusion-reaction kinetic model for the removal of aqueous 4-chlorophenol with immobilized peroxidase. Chemical Engineering Journal, 2011, 166, 693-703.	6.6	8

#	Article	lF	CITATIONS
37	Modeling of Aniline Removal by Reverse Osmosis Using Different Membranes. Chemical Engineering and Technology, 2011, 34, 1753-1759.	0.9	12
38	Degradation of phenolic pollutants using KrCl and XeBr excilamps in the presence of dye: A comparative study. Desalination, 2011, 274, 156-163.	4.0	15
39	Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal. Environmental Technology (United Kingdom), 2011, 32, 1497-1502.	1.2	7
40	Photodegradation of 4-chlorophenol using XeBr, KrCl and Cl2 barrier-discharge excilamps: A comparative study. Chemical Engineering Journal, 2010, 158, 120-128.	6.6	29
41	Testing a KrCl excilamp as new enhanced UV source for 4-chlorophenol degradation: Experimental results and kinetic model. Chemical Engineering and Processing: Process Intensification, 2010, 49, 113-119.	1.8	26
42	Enhancement of 4-Chlorophenol Photodegradation with KrCl Excimer UV Lamp by Adding Hydrogen Peroxide. Separation Science and Technology, 2010, 45, 1603-1609.	1.3	21
43	Atrazine removal from aqueous solutions by nanofiltration. Desalination and Water Treatment, 2010, 13, 143-148.	1.0	10
44	A New Kinetic Model for 4-Chlorophenol Adsorption on Expanded Clay. Chemical Product and Process Modeling, 2009, 4, .	0.5	2
45	Screening and selection of lipases for the enzymatic production of polyglycerol polyricinoleate. Biochemical Engineering Journal, 2009, 46, 217-222.	1.8	24
46	Adsorption–desorption processes of Candida rugosa lipase in an ionic exchange resin. New Biotechnology, 2009, 25, S127-S128.	2.4	0
47	Testing three commercial peroxidases for 4-chlorophenol removal using a continuous tank reactor with ultrafiltration module. New Biotechnology, 2009, 25, S158-S159.	2.4	Ο
48	Assessing combination treatment, enzymatic oxidation and ultrafiltration in a membrane bioreactor, for 4-chlorophenol removal: Experimental and modeling. Journal of Membrane Science, 2009, 342, 198-207.	4.1	13
49	Comparison of alternative treatments for 4-chlorophenol removal from aqueous solutions: Use of free and immobilized soybean peroxidase and KrCl excilamp. Journal of Hazardous Materials, 2009, 169, 46-51.	6.5	43
50	Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination, 2009, 245, 680-686.	4.0	74
51	Application of reverse osmosis to remove aniline from wastewater. Desalination, 2009, 245, 687-693.	4.0	42
52	A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bioprocess and Biosystems Engineering, 2008, 31, 587-593.	1.7	53
53	A short recursive procedure for evaluating effectiveness factors for immobilized enzymes with reversible Michaelis–Menten kinetics. Biochemical Engineering Journal, 2008, 39, 58-65.	1.8	7
54	Phenol removal from water by hybrid processes: study of the membrane process step. Desalination, 2008, 223, 323-329.	4.0	61

#	Article	IF	CITATIONS
55	A covered particle deactivation model and an expanded Dunford mechanism for the kinetic analysis of the immobilized SBP/phenol/hydrogen peroxide system. Chemical Engineering Journal, 2008, 138, 460-473.	6.6	15
56	A transient design model of a continuous tank reactor for removing phenol with immobilized soybean peroxidase and hydrogen peroxide. Chemical Engineering Journal, 2008, 145, 142-148.	6.6	24
57	Experimental behaviour and design model of a continuous tank reactor for removing 4-chlorophenol with soybean peroxidase. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1786-1792.	1.8	14
58	Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa. Biochemical Engineering Journal, 2008, 39, 450-456.	1.8	41
59	Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension. Letters in Applied Microbiology, 2008, 47, 508-513.	1.0	42
60	A new procedure for evaluating the activity yield of immobilized enzymes: Application to peroxidase/hydrogen peroxide/phenolic compounds system. Journal of Biotechnology, 2007, 131, S80-S81.	1.9	0
61	Elimination of 4-chlorophenol by soybean peroxidase and hydrogen peroxide: Kinetic model and intrinsic parameters. Biochemical Engineering Journal, 2007, 34, 242-247.	1.8	14
62	Experimental behaviour and design model of a fluidized bed reactor with immobilized peroxidase for phenol removal. Chemical Engineering Journal, 2007, 127, 47-57.	6.6	35
63	Removal of 4-chlorophenol by soybean peroxidase and hydrogen peroxide in a discontinuous tank reactor. Desalination, 2006, 195, 51-59.	4.0	23
64	Immobilization of peroxidases on glass beads: An improved alternative for phenol removal. Enzyme and Microbial Technology, 2006, 39, 1016-1022.	1.6	149
65	A New Method to Estimate Intrinsic Parameters in the Ping-pong Bisustrate Kinetic: Application to the Oxipolymerization of Phenol. American Journal of Biochemistry and Biotechnology, 2005, 1, 115-120.	0.1	11
66	Testing a Pseudomonas putida strain for 4-chlorophenol degradation in the presence of glucose. , 0, 40, 33-37.		0
67	Optimization of Cu(II) removal/recovery by bulk liquid membranes containing benzoylacetone as mobile carrier. , 0, 88, 139-144.		0