List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981870/publications.pdf Version: 2024-02-01

MADIA COMEZ

#	Article	IF	CITATIONS
1	Immobilization of peroxidases on glass beads: An improved alternative for phenol removal. Enzyme and Microbial Technology, 2006, 39, 1016-1022.	3.2	149
2	Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination, 2009, 245, 680-686.	8.2	74
3	Phenol removal from water by hybrid processes: study of the membrane process step. Desalination, 2008, 223, 323-329.	8.2	61
4	A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bioprocess and Biosystems Engineering, 2008, 31, 587-593.	3.4	53
5	Comparison of alternative treatments for 4-chlorophenol removal from aqueous solutions: Use of free and immobilized soybean peroxidase and KrCl excilamp. Journal of Hazardous Materials, 2009, 169, 46-51.	12.4	43
6	Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension. Letters in Applied Microbiology, 2008, 47, 508-513.	2.2	42
7	Application of reverse osmosis to remove aniline from wastewater. Desalination, 2009, 245, 687-693.	8.2	42
8	Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa. Biochemical Engineering Journal, 2008, 39, 450-456.	3.6	41
9	Application of the Spiegler–Kedem–Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes. Desalination, 2013, 315, 70-75.	8.2	40
10	Possible Uses for Sludge from Drinking Water Treatment Plants. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	37
11	Experimental behaviour and design model of a fluidized bed reactor with immobilized peroxidase for phenol removal. Chemical Engineering Journal, 2007, 127, 47-57.	12.7	35
12	Photodegradation of congo red using XeBr, KrCl and Cl2 barrier discharge excilamps: A kinetics study. Desalination, 2011, 281, 364-371.	8.2	34
13	Removal of Different Dye Solutions: A Comparison Study Using a Polyamide NF Membrane. Membranes, 2020, 10, 408.	3.0	30
14	Photodegradation of 4-chlorophenol using XeBr, KrCl and Cl2 barrier-discharge excilamps: A comparative study. Chemical Engineering Journal, 2010, 158, 120-128.	12.7	29
15	Behaviour of polysulfone ultrafiltration membrane for dyes removal. Water Science and Technology, 2018, 77, 2093-2100.	2.5	27
16	Testing a KrCl excilamp as new enhanced UV source for 4-chlorophenol degradation: Experimental results and kinetic model. Chemical Engineering and Processing: Process Intensification, 2010, 49, 113-119.	3.6	26
17	A transient design model of a continuous tank reactor for removing phenol with immobilized soybean peroxidase and hydrogen peroxide. Chemical Engineering Journal, 2008, 145, 142-148.	12.7	24
18	Screening and selection of lipases for the enzymatic production of polyglycerol polyricinoleate. Biochemical Engineering Journal, 2009, 46, 217-222.	3.6	24

#	Article	IF	CITATIONS
19	Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochemical Engineering Journal, 2014, 84, 91-97.	3.6	24
20	Removal of 4-chlorophenol by soybean peroxidase and hydrogen peroxide in a discontinuous tank reactor. Desalination, 2006, 195, 51-59.	8.2	23
21	Development of a kinetic model for the UV/H2O2 photodegradation of 2,4-dichlorophenoxiacetic acid. Chemical Engineering Journal, 2015, 266, 356-367.	12.7	23
22	Enhancement of 4-Chlorophenol Photodegradation with KrCl Excimer UV Lamp by Adding Hydrogen Peroxide. Separation Science and Technology, 2010, 45, 1603-1609.	2.5	21
23	A KrCl exciplex flow-through photoreactor for degrading 4-chlorophenol: Experimental and modelling. Applied Catalysis B: Environmental, 2012, 117-118, 194-203.	20.2	19
24	Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods. Environmental Technology (United Kingdom), 2012, 33, 1055-1064.	2.2	18
25	Kinetic modelling and kinetic parameters calculation in the lipase-catalysed synthesis of geranyl acetate. Chemical Engineering Research and Design, 2018, 138, 135-143.	5.6	18
26	Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme® CalB lipase in a solvent-free system. Catalysis Today, 2015, 255, 49-53.	4.4	16
27	A covered particle deactivation model and an expanded Dunford mechanism for the kinetic analysis of the immobilized SBP/phenol/hydrogen peroxide system. Chemical Engineering Journal, 2008, 138, 460-473.	12.7	15
28	Degradation of phenolic pollutants using KrCl and XeBr excilamps in the presence of dye: A comparative study. Desalination, 2011, 274, 156-163.	8.2	15
29	Behaviour of RO90 membrane on the removal of 4-nitrophenol and 4-nitroaniline by low pressure reverse osmosis. Journal of Water Process Engineering, 2015, 7, 169-175.	5.6	15
30	Elimination of 4-chlorophenol by soybean peroxidase and hydrogen peroxide: Kinetic model and intrinsic parameters. Biochemical Engineering Journal, 2007, 34, 242-247.	3.6	14
31	Experimental behaviour and design model of a continuous tank reactor for removing 4-chlorophenol with soybean peroxidase. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1786-1792.	3.6	14
32	Assessing combination treatment, enzymatic oxidation and ultrafiltration in a membrane bioreactor, for 4-chlorophenol removal: Experimental and modeling. Journal of Membrane Science, 2009, 342, 198-207.	8.2	13
33	A new substrate and by-product kinetic model for the photodegradation of 4-chlorophenol with KrCl exciplex UV lamp and hydrogen peroxide. Chemical Engineering Journal, 2012, 187, 36-44.	12.7	13
34	Polyamide nanofiltration membranes to remove aniline in aqueous solutions. Environmental Technology (United Kingdom), 2014, 35, 1175-1181.	2.2	13
35	Modelling and experimental checking of the influence of substrate concentration on the first order kinetic constant in photo-processes. Journal of Environmental Management, 2016, 183, 818-825.	7.8	13
36	Modeling of Aniline Removal by Reverse Osmosis Using Different Membranes. Chemical Engineering and Technology, 2011, 34, 1753-1759.	1.5	12

#	Article	IF	CITATIONS
37	Testing aPseudomonas putidastrain for 4-chlorophenol degradation in the presence of glucose. Desalination and Water Treatment, 2012, 40, 33-37.	1.0	11
38	Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. International Journal of Environmental Research and Public Health, 2021, 18, 4036.	2.6	11
39	A New Method to Estimate Intrinsic Parameters in the Ping-pong Bisustrate Kinetic: Application to the Oxipolymerization of Phenol. American Journal of Biochemistry and Biotechnology, 2005, 1, 115-120.	0.4	11
40	Atrazine removal from aqueous solutions by nanofiltration. Desalination and Water Treatment, 2010, 13, 143-148.	1.0	10
41	Feasibility of Adsorption Kinetic Models to Study Carrier-Mediated Transport of Heavy Metal Ions in Emulsion Liquid Membranes. Membranes, 2022, 12, 66.	3.0	9
42	A diffusion-reaction kinetic model for the removal of aqueous 4-chlorophenol with immobilized peroxidase. Chemical Engineering Journal, 2011, 166, 693-703.	12.7	8
43	Kinetic Study of the Enzymatic Synthesis of 2-Phenylethyl Acetate in Discontinuous Tank Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 11280-11287.	3.7	8
44	Developing the rate equations for two enzymatic Ping-Pong reactions in series: Application to the bio-synthesis of Bis(2-ethylhexyl) azelate. Biochemical Engineering Journal, 2020, 161, 107691.	3.6	8
45	Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes. Membranes, 2022, 12, 562.	3.0	8
46	A short recursive procedure for evaluating effectiveness factors for immobilized enzymes with reversible Michaelis–Menten kinetics. Biochemical Engineering Journal, 2008, 39, 58-65.	3.6	7
47	Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal. Environmental Technology (United Kingdom), 2011, 32, 1497-1502.	2.2	7
48	Continuous tank reactors in series: an improved alternative in the removal of phenolic compounds with immobilized peroxidase. Environmental Technology (United Kingdom), 2012, 33, 103-111.	2.2	7
49	Application of the solution-diffusion model for the removal of atrazine using a nanofiltration membrane. Desalination and Water Treatment, 2013, 51, 2244-2252.	1.0	7
50	Influence of Physicochemical Parameters of Organic Solutes on the Retention and Flux in a Nanofiltration Process. Chemical Engineering and Technology, 2016, 39, 1177-1184.	1.5	7
51	Screening of three commercial plant peroxidases for the removal of phenolic compounds in membrane bioreactors. Environmental Technology (United Kingdom), 2012, 33, 1071-1079.	2.2	6
52	Removal of anilinic compounds using the NF-97 membrane: Application of the solution-diffusion and SKK models. Separation Science and Technology, 2016, 51, 2429-2439.	2.5	6
53	Comparison of two excilamps and two reactor configurations in the UV-H2O2 removal process of amaranth. Journal of Water Process Engineering, 2020, 33, 101051.	5.6	6
54	Removal of 4-chlorophenol in a continuous membrane bioreactor using different commercial peroxidases. Desalination and Water Treatment, 2012, 37, 97-107.	1.0	4

#	Article	IF	CITATIONS
55	Removal of 4-chloro-2-methylphenol from aqueous solutions by nanofiltration and reverse osmosis. Desalination and Water Treatment, 2015, 53, 1499-1505.	1.0	4
56	Photodegradation of 2-methyl-4-chlorophenol in a KrCl exciplex flow-through photoreactor: a kinetic study. Desalination and Water Treatment, 2015, 54, 1862-1871.	1.0	4
57	A New Kinetic Model for 4-Chlorophenol Adsorption on Expanded Clay. Chemical Product and Process Modeling, 2009, 4, .	0.9	2
58	Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors. Environmental Technology (United Kingdom), 2014, 35, 1866-1873.	2.2	2
59	Kinetic Model for UV/H2O2 Degradation of 5-Methoxypsoralen. Russian Physics Journal, 2016, 59, 552-561.	0.4	1
60	Photodegradation of some Furocoumarins in Ethanol under UV Irradiation. Key Engineering Materials, 2016, 683, 402-405.	0.4	1
61	Fluorescence analysis of Bisphenol A photolysis under exposure to excilamps. , 2019, , .		1
62	A new procedure for evaluating the activity yield of immobilized enzymes: Application to peroxidase/hydrogen peroxide/phenolic compounds system. Journal of Biotechnology, 2007, 131, S80-S81.	3.8	0
63	Adsorption–desorption processes of Candida rugosa lipase in an ionic exchange resin. New Biotechnology, 2009, 25, S127-S128.	4.4	0
64	Testing three commercial peroxidases for 4-chlorophenol removal using a continuous tank reactor with ultrafiltration module. New Biotechnology, 2009, 25, S158-S159.	4.4	0
65	Toward Green Chemical Engineering. International Journal of Chemical Engineering, 2013, 2013, 1-3.	2.4	0
66	Testing a Pseudomonas putida strain for 4-chlorophenol degradation in the presence of glucose. , 0, 40, 33-37.		0
67	Optimization of Cu(II) removal/recovery by bulk liquid membranes containing benzoylacetone as mobile carrier. , 0, 88, 139-144.		Ο
68	Removal of 4-chlorophenol in a continuous membrane bioreactor using different commercial peroxidases. Desalination and Water Treatment, 2012, , 97-107.	1.0	0