Deepa Ajit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9818411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nature Genetics, 2021, 53, 1006-1021.	21.4	44
2	Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. ELife, 2021, 10, .	6.0	15
3	An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline. Nature Communications, 2020, 11, 5522.	12.8	56
4	A unique tau conformation generated by an acetylation-mimic substitution modulates P301S-dependent tau pathology and hyperphosphorylation. Journal of Biological Chemistry, 2019, 294, 16698-16711.	3.4	13
5	The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Reports, 2017, 20, 2169-2183.	6.4	61
6	Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochemistry International, 2016, 97, 49-56.	3.8	35
7	Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology, 2016, 104, 169-179.	4.1	91
8	Beneficial Effects of Dietary EGCG and Voluntary Exercise on Behavior in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2015, 44, 561-572.	2.6	114
9	P2Y receptors in Alzheimer's disease. Biology of the Cell, 2015, 107, 1-21.	2.0	38
10	Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2014, 49, 1031-1042.	4.0	55
11	Upâ€regulation and activation of the P2Y ₂ nucleotide receptor mediate neurite extension in <scp>IL</scp> â€1βâ€treated mouse primary cortical neurons. Journal of Neurochemistry, 2013, 125, 885-896.	3.9	37
12	P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation. Molecular Neurobiology, 2012, 46, 96-113.	4.0	76
13	Neuroprotective roles of the P2Y2 receptor. Purinergic Signalling, 2012, 8, 559-578.	2.2	45
14	Nucleotides released from Aβ _{1–42} â€ŧreated microglial cells increase cell migration and Aβ _{1–42} uptake through P2Y ₂ receptor activation. Journal of Neurochemistry, 2012, 121, 228-238.	3.9	67
15	Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 2011, 8, 121.	7.2	136
16	Probing the amyloid-β(1–40) fibril environment with substituted tryptophan residues. Archives of Biochemistry and Biophysics, 2010, 494, 192-197.	3.0	13
17	Oligomeric amyloid-l²(1–42) induces THP-1 human monocyte adhesion and maturation. Brain Research, 2009, 1254, 109-119	2.2	13
18	Amyloid-β(1â^'42) Fibrillar Precursors Are Optimal for Inducing Tumor Necrosis Factor-α Production in the THP-1 Human Monocytic Cell Line. Biochemistry, 2009, 48, 9011-9021.	2.5	19

#	Article	IF	CITATIONS
19	Tollâ€like receptors 2 and 4 mediate Aβ(1–42) activation of the innate immune response in a human monocytic cell line. Journal of Neurochemistry, 2008, 104, 524-533.	3.9	146