Clay Fuqua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981602/publications.pdf Version: 2024-02-01

104	12 041	50276	30922
104	12,841	46	102
papers	citations	h-index	g-index
112	112	112	12237
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 2010, 8, 15-25.	28.6	2,085
2	Regulation of Gene Expression by Cell-to-Cell Communication: Acyl-Homoserine Lactone Quorum Sensing. Annual Review of Genetics, 2001, 35, 439-468.	7.6	1,251
3	CENSUS AND CONSENSUS IN BACTERIAL ECOSYSTEMS: The LuxR-LuxI Family of Quorum-Sensing Transcriptional Regulators. Annual Review of Microbiology, 1996, 50, 727-751.	7.3	1,095
4	Listening in on bacteria: acyl-homoserine lactone signalling. Nature Reviews Molecular Cell Biology, 2002, 3, 685-695.	37.0	964
5	Biofilm Formation by Plant-Associated Bacteria. Annual Review of Microbiology, 2007, 61, 401-422.	7.3	704
6	Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature, 2004, 432, 910-913.	27.8	415
7	Biofilm formation in plant–microbe associations. Current Opinion in Microbiology, 2004, 7, 602-609.	5.1	366
8	Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene, 1999, 227, 197-203.	2.2	337
9	Analogs of the Autoinducer 3-Oxooctanoyl-Homoserine Lactone Strongly Inhibit Activity of the TraR Protein of <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 1998, 180, 5398-5405.	2.2	300
10	A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 2004, 58, 351-360.	1.6	289
11	Self perception in bacteria: quorum sensing with acylated homoserine lactones. Current Opinion in Microbiology, 1998, 1, 183-189.	5.1	281
12	Biofilms on Indwelling Urethral Catheters Produce Quorum-Sensing Signal Molecules In Situ and In Vitro. Applied and Environmental Microbiology, 1998, 64, 3486-3490.	3.1	213
13	Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1697-1701.	7.1	195
14	Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3828-3833.	7.1	187
15	Motility and Chemotaxis in <i>Agrobacterium tumefaciens</i> Surface Attachment and Biofilm Formation. Journal of Bacteriology, 2007, 189, 8005-8014.	2.2	176
16	Surface contact stimulates the justâ€inâ€time deployment of bacterial adhesins. Molecular Microbiology, 2012, 83, 41-51.	2.5	172
17	Localization and Visualization of a <i>Coxiella</i> -Type Symbiont within the Lone Star Tick, <i>Amblyomma americanum</i> . Applied and Environmental Microbiology, 2007, 73, 6584-6594.	3.1	124
18	Quorum Sensing in Rhizobium sp. Strain NGR234 Regulates Conjugal Transfer (tra) Gene Expression and Influences Growth Rate. Journal of Bacteriology, 2003, 185, 809-822.	2.2	119

#	Article	IF	CITATIONS
19	Chemical Signaling Between Plants and Plant-Pathogenic Bacteria. Annual Review of Phytopathology, 2013, 51, 17-37.	7.8	119
20	The QscR Quorum-Sensing Regulon of Pseudomonas aeruginosa : an Orphan Claims Its Identity. Journal of Bacteriology, 2006, 188, 3169-3171.	2.2	115
21	Phosphorus Limitation Enhances Biofilm Formation of the Plant Pathogen Agrobacterium tumefaciens through the PhoR-PhoB Regulatory System. Journal of Bacteriology, 2004, 186, 4492-4501.	2.2	113
22	Decoding Microbial Chatter: Cell-Cell Communication in Bacteria. Journal of Bacteriology, 2005, 187, 5507-5519.	2.2	111
23	The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME Journal, 2013, 7, 221-223.	9.8	107
24	What's in a name? The semantics of quorum sensing. Trends in Microbiology, 2010, 18, 383-387.	7.7	105
25	The Effect of Cellulose Overproduction on Binding and Biofilm Formation on Roots by Agrobacterium tumefaciens. Molecular Plant-Microbe Interactions, 2005, 18, 1002-1010.	2.6	100
26	Concordance of bacterial communities of two tick species and blood of their shared rodent host. Molecular Ecology, 2015, 24, 2566-2579.	3.9	100
27	Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environmental Microbiology, 2007, 10, 070907134207003-???.	3.8	97
28	Genetic analysis of <i><scp>A</scp>grobacterium tumefaciens</i> unipolar polysaccharide production reveals complex integrated control of the motileâ€ŧoâ€sessile switch. Molecular Microbiology, 2013, 89, 929-948.	2.5	97
29	Detection of quorum sensing signals in the haloalkaliphilic archaeonNatronococcus occultus. FEMS Microbiology Letters, 2003, 221, 49-52.	1.8	93
30	Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. Frontiers in Plant Science, 2014, 5, 176.	3.6	92
31	Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life. G3: Genes, Genomes, Genetics, 2016, 6, 2583-2591.	1.8	89
32	Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10. Molecular Microbiology, 1996, 20, 1199-1210.	2.5	86
33	Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Current Opinion in Microbiology, 2009, 12, 708-714.	5.1	84
34	A complex LuxR–LuxI type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Molecular Microbiology, 2012, 85, 916-933.	2.5	75
35	Agrobacterium tumefaciens ExoR Controls Acid Response Genes and Impacts Exopolysaccharide Synthesis, Horizontal Gene Transfer, and Virulence Gene Expression. Journal of Bacteriology, 2014, 196, 3221-3233.	2.2	66
36	Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Research in Microbiology, 2012, 163, 674-684.	2.1	65

#	Article	IF	CITATIONS
37	Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. Microbiology (United Kingdom), 2010, 156, 2670-2681.	1.8	63
38	Diffusion of Bacterial Cells in Porous Media. Biophysical Journal, 2016, 110, 247-257.	0.5	62
39	Inhibition of the Agrobacterium tumefaciens TraR Quorum-sensing Regulator. Journal of Biological Chemistry, 2001, 276, 49449-49458.	3.4	59
40	Biofilms 2012: New Discoveries and Significant Wrinkles in a Dynamic Field. Journal of Bacteriology, 2013, 195, 2947-2958.	2.2	59
41	Antiparallel and Interlinked Control of Cellular Iron Levels by the Irr and RirA Regulators of Agrobacterium tumefaciens. Journal of Bacteriology, 2011, 193, 3461-3472.	2.2	56
42	A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1691-1699.	2.6	56
43	Ecological and evolutionary dynamics of a model facultative pathogen: <i>Agrobacterium</i> and crown gall disease of plants. Environmental Microbiology, 2018, 20, 16-29.	3.8	54
44	Laboratory Maintenance of <i>Agrobacterium</i> . Current Protocols in Microbiology, 2012, 24, Unit3D.1.	6.5	52
45	The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Molecular Microbiology, 2004, 52, 1495-1511.	2.5	51
46	Coordination of Division and Development Influences Complex Multicellular Behavior in Agrobacterium tumefaciens. PLoS ONE, 2013, 8, e56682.	2.5	51
47	Genetic Manipulation of Agrobacterium. Current Protocols in Microbiology, 2012, 25, Unit 3D.2	6.5	50
48	Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade. International Journal of Molecular Sciences, 2014, 15, 654-669.	4.1	50
49	A Pterin-Dependent Signaling Pathway Regulates a Dual-Function Diguanylate Cyclase-Phosphodiesterase Controlling Surface Attachment in Agrobacterium tumefaciens. MBio, 2015, 6, e00156.	4.1	48
50	Introduction to Bacterial Signals and Chemical Communication. Chemical Reviews, 2011, 111, 1-3.	47.7	45
51	Structural basis for antiactivation in bacterial quorum sensing. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16474-16479.	7.1	43
52	Quorum-sensing antiactivator TraM forms a dimer that dissociates to inhibit TraR. Molecular Microbiology, 2004, 52, 1641-1651.	2.5	39
53	Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Frontiers in Plant Science, 2014, 5, 635.	3.6	36
54	Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. Current Topics in Microbiology and Immunology, 2018, 418, 143-184.	1.1	36

#	Article	IF	CITATIONS
55	Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)-utilizing bacterial strains indigenous to contaminated tropical African soils. Biodegradation, 2008, 19, 145-159.	3.0	35
56	Passing the baton between laps: adhesion and cohesion in <i>Pseudomonas putida</i> biofilms. Molecular Microbiology, 2010, 77, 533-536.	2.5	33
57	The CckA-ChpT-CtrA Phosphorelay System Is Regulated by Quorum Sensing and Controls Flagellar Motility in the Marine Sponge Symbiont Ruegeria sp. KLH11. PLoS ONE, 2013, 8, e66346.	2.5	33
58	The Ctp Type IVb Pilus Locus of Agrobacterium tumefaciens Directs Formation of the Common Pili and Contributes to Reversible Surface Attachment. Journal of Bacteriology, 2014, 196, 2979-2988.	2.2	32
59	The Essential Role of Spermidine in Growth of <i>Agrobacterium tumefaciens</i> Is Determined by the 1,3-Diaminopropane Moiety. ACS Chemical Biology, 2016, 11, 491-499.	3.4	31
60	Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132173.	2.6	30
61	Pterin function in bacteria. Pteridines, 2017, 28, 23-36.	0.5	28
62	Cell-Cell Influences on Bacterial Community Development in Aquatic Biofilms. Applied and Environmental Microbiology, 2005, 71, 8987-8990.	3.1	27
63	Diversity and functional analysis of <i>luxS</i> genes in Vibrios from marine sponges <i>Mycale laxissima</i> and <i>Ircinia strobilina</i> . ISME Journal, 2011, 5, 1505-1516.	9.8	27
64	Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. Journal of Bacteriology, 2016, 198, 816-829.	2.2	27
65	Large Deletions in the pAtC58 Megaplasmid of Agrobacterium tumefaciens Can Confer Reduced Carriage Cost and Increased Expression of Virulence Genes. Genome Biology and Evolution, 2013, 5, 1353-1364.	2.5	25
66	Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens. Journal of Bacteriology, 2016, 198, 2682-2691.	2.2	25
67	Growth on dichlorobiphenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils. Applied Microbiology and Biotechnology, 2007, 74, 484-492.	3.6	24
68	RESOURCE AND COMPETITIVE DYNAMICS SHAPE THE BENEFITS OF PUBLIC GOODS COOPERATION IN A PLANT PATHOGEN. Evolution; International Journal of Organic Evolution, 2012, 66, 1953-1965.	2.3	24
69	Identification and sequence analysis of an Mhc class II B gene in a marsupial (Monodelphis domestica). Immunogenetics, 1999, 49, 461-463.	2.4	22
70	Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities. PLoS ONE, 2014, 9, e109677.	2.5	21
71	A solo luxI-type gene directs acylhomoserine lactone synthesis and contributes to motility control in the marine sponge symbiont Ruegeria sp. KLH11. Microbiology (United Kingdom), 2015, 161, 50-56.	1.8	21
72	Novel Pseudotaxis Mechanisms Improve Migration of Straight-Swimming Bacterial Mutants Through a Porous Environment. MBio, 2015, 6, e00005.	4.1	20

Clay Fuqua

#	Article	IF	CITATIONS
73	Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s). Archives of Microbiology, 2012, 194, 391-403.	2.2	19
74	Multiple Flagellin Proteins Have Distinct and Synergistic Roles in Agrobacterium tumefaciens Motility. Journal of Bacteriology, 2018, 200, .	2.2	18
75	Conformation and dynamic interactions of the multipartite genome in <i>Agrobacterium tumefaciens</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
76	Regulatory Linkages between Flagella and Surfactant during Swarming Behavior: Lubricating the Flagellar Propeller?. Journal of Bacteriology, 2012, 194, 1283-1286.	2.2	15
77	Phenotypic Analyses of Agrobacterium. Current Protocols in Microbiology, 2012, 25, Unit 3D.3	6.5	15
78	Identification and Characterization of a Second Quorum-Sensing System in Agrobacterium tumefaciens A6. Journal of Bacteriology, 2014, 196, 1403-1411.	2.2	15
79	Biofilms 2018: a Diversity of Microbes and Mechanisms. Journal of Bacteriology, 2019, 201, .	2.2	14
80	Genome Sequence of Ruegeria sp. Strain KLH11, an <i>N</i> -Acylhomoserine Lactone-Producing Bacterium Isolated from the Marine Sponge Mycale laxissima. Journal of Bacteriology, 2011, 193, 5011-5012.	2.2	13
81	Crystal Structure and Mechanism of TraM2, a Second Quorum-Sensing Antiactivator of Agrobacterium tumefaciens Strain A6. Journal of Bacteriology, 2006, 188, 8244-8251.	2.2	11
82	The Agrobacterium tumefaciens Transcription Factor BlcR Is Regulated via Oligomerization. Journal of Biological Chemistry, 2011, 286, 20431-20440.	3.4	11
83	From endosymbionts to host communities: factors determining the reproductive success of arthropod vectors. Oecologia, 2017, 184, 859-871.	2.0	11
84	The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. Microbiology (United Kingdom), 2017, 163, 1680-1691.	1.8	11
85	Motility control through an antiâ€activation mechanism in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2021, 116, 1281-1297.	2.5	10
86	[1] Methods for studying bacterial biofilms associated with plants. Methods in Enzymology, 2001, 337, 3-18.	1.0	9
87	Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens. Microbiology (United Kingdom), 2019, 165, 146-162.	1.8	9
88	Acylated Homoserine Lactone Signaling in Marine Bacterial Systems. , 0, , 251-272.		9
89	Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2022, 117, 1023-1047.	2.5	9
90	Centromere Interactions Promote the Maintenance of the Multipartite Genome in Agrobacterium tumefaciens. MBio, 2022, 13, e0050822.	4.1	9

#	Article	IF	CITATIONS
91	New Twists and Turns in Bacterial Locomotion and Signal Transduction. Journal of Bacteriology, 2019, 201, .	2.2	7
92	Co-dependent and Interdigitated: Dual Quorum Sensing Systems Regulate Conjugative Transfer of the Ti Plasmid and the At Megaplasmid in Agrobacterium tumefaciens 15955. Frontiers in Microbiology, 2020, 11, 605896.	3.5	7
93	A dicentric bacterial chromosome requires XerC/D site-specific recombinases for resolution. Current Biology, 2022, 32, 3609-3618.e7.	3.9	6
94	Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type <i>Agrobacterium tumefaciens</i> Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3: Genes, Genomes, Genetics, 2019, 9, 3489-3500.	1.8	5
95	Simple and economical biosensors for distinguishing Agrobacterium-mediated plant galls from nematode-mediated root knots. Scientific Reports, 2019, 9, 17961.	3.3	5
96	Enzymatic and Mutational Analysis of the PruA Pteridine Reductase Required for Pterin-Dependent Control of Biofilm Formation in Agrobacterium tumefaciens. Journal of Bacteriology, 2020, 202, .	2.2	5
97	Strains of <i>Ehrlichia chaffeensis</i> in Southern Indiana, Kentucky, Mississippi, and North Carolina. Journal of Medical Entomology, 2009, 46, 1468-1473.	1.8	4
98	The quorum sensing transcriptional regulator TraR has separate binding sites for DNA and the anti-activator. Biochemical and Biophysical Research Communications, 2012, 418, 396-401.	2.1	4
99	Agrobacterium-Host Attachment and Biofilm Formation. , 2008, , 243-277.		4
100	In vivo analysis of DNA binding and ligand interaction of BlcR, an IclR-type repressor from Agrobacterium tumefaciens. Microbiology (United Kingdom), 2013, 159, 814-822.	1.8	3
101	Promoter-probe cassettes with the gusA (β-glucuronidase) reporter gene and several different antibiotic resistance markers. Journal of Microbiological Methods, 2005, 60, 281-283.	1.6	2
102	Short, Rich, and Powerful: a New Family of Arginine-Rich Small Proteins Have Outsized Impact in <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 2020, 202, .	2.2	1
103	Molecular Mechanisms of Quorum Sensing. , 0, , 361-384.		0
104	A complex <scp>LuxR–LuxI</scp> type quorum sensing network in a roseobacterial marine sponge symbiont activates flagellar motility and inhibits biofilm formation. Molecular Microbiology, 2012, 86, 500-500.	2.5	0