Rachael Simister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9815846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variability for cell-wall and yield components in commercial sugarcane (<i>Saccharum spp</i> .) progeny: contrasts with parental lines and energy cane. Journal of Crop Improvement, 2022, 36, 769-788.	1.7	4
2	Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Science of the Total Environment, 2021, 762, 143134.	8.0	72
3	Design of experiments driven optimization of alkaline pretreatment and saccharification for sugarcane bagasse. Bioresource Technology, 2021, 321, 124499.	9.6	16
4	Senna reticulata: a Viable Option for Bioenergy Production in the Amazonian Region. Bioenergy Research, 2021, 14, 91-105.	3.9	3
5	Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105105.	5.5	16
6	Elucidating the multifunctional role of the cell wall components in the maize exploitation. BMC Plant Biology, 2021, 21, 251.	3.6	2
7	Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. Frontiers in Plant Science, 2021, 12, 679966.	3.6	11
8	Improved hydrolysis yields and silica recovery by design of experiments applied to acid-alkali pretreatment in rice husks. Industrial Crops and Products, 2021, 170, 113676.	5.2	12
9	Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant, Cell and Environment, 2020, 43, 2172-2191.	5.7	79
10	Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. Annals of Botany, 2019, 124, 553-566.	2.9	19
11	Sustainable Galactarateâ€Based Polymers: Multiâ€Enzymatic Production of Pectinâ€Derived Polyesters. Macromolecular Rapid Communications, 2019, 40, e1900361.	3.9	14
12	Sudangrass, an alternative lignocellulosic feedstock for bioenergy in Argentina. PLoS ONE, 2019, 14, e0217435.	2.5	8
13	An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Communications, 2018, 9, 756.	12.8	192
14	A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in <i>Brachypodium distachyon</i> . New Phytologist, 2018, 218, 974-985.	7.3	21
15	Biomass recalcitrance in barley, wheat and triticale straw: Correlation of biomass quality with classic agronomical traits. PLoS ONE, 2018, 13, e0205880.	2.5	9
16	Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnology for Biofuels, 2018, 11, 206.	6.2	37
17	Response of cell-wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus. Planta, 2018, 248, 1213-1229.	3.2	7
18	Characterization of the cellulolytic secretome of <i>Trichoderma harzianum</i> during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnology Progress, 2016, 32, 327-336.	2.6	39

#	Article	IF	CITATIONS
19	Linkage Mapping of Stem Saccharification Digestibility in Rice. PLoS ONE, 2016, 11, e0159117.	2.5	6
20	Side by Side Comparison of Chemical Compounds Generated by Aqueous Pretreatments of Maize Stover, Miscanthus and Sugarcane Bagasse. Bioenergy Research, 2014, 7, 1466-1480.	3.9	19
21	Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnology for Biofuels, 2014, 7, 10.	6.2	87