Viktoria Zeisler-Diehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/981496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export. PLoS Biology, 2015, 13, e1002053.	5.6	162
2	Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytologist, 2019, 221, 180-194.	7.3	89
3	Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley. Plant, Cell and Environment, 2017, 40, 1392-1408.	5.7	79
4	Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Journal of Plant Physiology, 2018, 227, 66-74.	3.5	72
5	Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta, 2016, 243, 65-81.	3.2	59
6	Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant, Cell and Environment, 2020, 43, 344-357.	5.7	39
7	Association between the concentration of n -alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Scientia Horticulturae, 2015, 197, 57-65.	3.6	34
8	The composite water and solute transport of barley (<i>Hordeum vulgare</i>) roots: effect of suberized barriers. Annals of Botany, 2017, 119, mcw252.	2.9	32
9	ABCG transporters export cutin precursors for the formation of the plant cuticle. Current Biology, 2021, 31, 2111-2123.e9.	3.9	28
10	Interaction of surfactants with barley leaf surfaces: time-dependent recovery of contact angles is due to foliar uptake of surfactants. Planta, 2022, 255, 1.	3.2	23
11	Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1336-1344.	2.4	22
12	Asymmetric water transport in dense leaf cuticles and cuticle-inspired compositionally graded membranes. Nature Communications, 2021, 12, 1267.	12.8	19
13	Russeting in Apple is Initiated after Exposure to Moisture Ends: Molecular and Biochemical Evidence. Plants, 2021, 10, 65.	3.5	16
14	Abscisic acid applied to sweet cherry at fruit set increases amounts of cell wall and cuticular wax components at the ripe stage. Scientia Horticulturae, 2021, 283, 110097.	3.6	15
15	Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis. Frontiers in Plant Science, 2017, 8, 68.	3.6	13
16	Increased cuticular wax deposition does not change residual foliar transpiration. Plant, Cell and Environment, 2022, 45, 1157-1171.	5.7	13
17	Non-Coding RNA Analyses of Seasonal Cambium Activity in Populus tomentosa. Cells, 2022, 11, 640.	4.1	10
18	Analysis of Extracellular Cell Wall Lipids: Wax, Cutin, and Suberin in Leaves, Roots, Fruits, and Seeds. Methods in Molecular Biology, 2021, 2295, 275-293.	0.9	9

#	Article	IF	CITATIONS
19	CESTâ€⊋.2 overexpression alters lipid metabolism and extends longevity of mitochondrial mutants. EMBO Reports, 2022, 23, e52606.	4.5	5
20	Alcohol Ethoxylates Enhancing the Cuticular Uptake of Lipophilic Epoxiconazole Do Not Increase the Rates of Cuticular Transpiration of Leaf and Fruit Cuticles. Journal of Agricultural and Food Chemistry, 2022, 70, 777-784.	5.2	2