
Mauricio R Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9812777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extinction Learning in Humans. Neuron, 2004, 43, 897-905.	3.8	1,592
2	The Role of the Dorsal Striatum in Reward and Decision-Making: Figure 1 Journal of Neuroscience, 2007, 27, 8161-8165.	1.7	1,133
3	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	13.7	634
4	Reward-Related Responses in the Human Striatum. Annals of the New York Academy of Sciences, 2007, 1104, 70-88.	1.8	624
5	Neural Circuitry Underlying the Regulation of Conditioned Fear and Its Relation to Extinction. Neuron, 2008, 59, 829-838.	3.8	581
6	Modulation of Caudate Activity by Action Contingency. Neuron, 2004, 41, 281-292.	3.8	510
7	Thinking like a trader selectively reduces individuals' loss aversion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5035-5040.	3.3	343
8	Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends in Cognitive Sciences, 2010, 14, 268-276.	4.0	256
9	The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3787-3800.	1.8	244
10	The Inherent Reward of Choice. Psychological Science, 2011, 22, 1310-1318.	1.8	224
11	Performance Feedback Drives Caudate Activation in a Phonological Learning Task. Journal of Cognitive Neuroscience, 2006, 18, 1029-1043.	1.1	198
12	Regulating the expectation of reward via cognitive strategies. Nature Neuroscience, 2008, 11, 880-881.	7.1	198
13	Event-related functional magnetic resonance imaging of reward-related brain circuitry in children and adolescents. Biological Psychiatry, 2004, 55, 359-366.	0.7	179
14	The social brain and reward: social information processing in the human striatum. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 61-73.	1.4	165
15	Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience, 2009, 3, 33.	1.0	162
16	Understanding Overbidding: Using the Neural Circuitry of Reward to Design Economic Auctions. Science, 2008, 321, 1849-1852.	6.0	156
17	Acute Stress Influences Neural Circuits of Reward Processing. Frontiers in Neuroscience, 2012, 6, 157.	1.4	143
18	Social Network Modulation of Reward-Related Signals. Journal of Neuroscience, 2012, 32, 9045-9052.	1.7	140

#	Article	IF	CITATIONS
19	Instructed smoking expectancy modulates cueâ€elicited neural activity: A preliminary study. Nicotine and Tobacco Research, 2005, 7, 637-645.	1.4	135
20	Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 2016, 19, 1545-1552.	7.1	135
21	How instructed knowledge modulates the neural systems of reward learning. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 55-60.	3.3	133
22	Savoring the Past: Positive Memories Evoke Value Representations in the Striatum. Neuron, 2014, 84, 847-856.	3.8	129
23	The amygdala: An agent of change in adolescent neural networks. Hormones and Behavior, 2013, 64, 298-313.	1.0	125
24	Stress and decision making: effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 2017, 14, 33-39.	2.0	121
25	Reward-related processing in the human brain: Developmental considerations. Development and Psychopathology, 2008, 20, 1191-1211.	1.4	114
26	Computational Substrates of Social Value in Interpersonal Collaboration. Journal of Neuroscience, 2015, 35, 8170-8180.	1.7	107
27	Neural Correlates of Expected Risks and Returns in Risky Choice across Development. Journal of Neuroscience, 2015, 35, 1549-1560.	1.7	107
28	Neural Systems Underlying Aversive Conditioning in Humans with Primary and Secondary Reinforcers. Frontiers in Neuroscience, 2011, 5, 71.	1.4	105
29	Effects of Direct Social Experience on Trust Decisions and Neural Reward Circuitry. Frontiers in Neuroscience, 2012, 6, 148.	1.4	100
30	The Value of Exercising Control Over Monetary Gains and Losses. Psychological Science, 2014, 25, 596-604.	1.8	86
31	Race and reputation: perceived racial group trustworthiness influences the neural correlates of trust decisions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 744-753.	1.8	85
32	Using fMRI to study reward processing in humans: past, present, and future. Journal of Neurophysiology, 2016, 115, 1664-1678.	0.9	84
33	Reminiscing about positive memories buffers acute stress responses. Nature Human Behaviour, 2017, 1, .	6.2	81
34	Parallel contributions of distinct human memory systems during probabilistic learning. NeuroImage, 2011, 55, 266-276.	2.1	77
35	Social Rewards and Social Networks in the Human Brain. Neuroscientist, 2014, 20, 387-402.	2.6	77
36	The Influence of Emotion Regulation on Decision-making under Risk. Journal of Cognitive Neuroscience, 2011, 23, 2569-2581.	1.1	76

#	Article	IF	CITATIONS
37	Toward a cumulative science of functional integration: A metaâ€analysis of psychophysiological interactions. Human Brain Mapping, 2016, 37, 2904-2917.	1.9	60
38	Pavlovian to instrumental transfer of control in a human learning task Emotion, 2011, 11, 1112-1123.	1.5	59
39	The good, the bad and the brain: neural correlates of appetitive and aversive values underlying decision making. Current Opinion in Behavioral Sciences, 2015, 5, 78-84.	2.0	59
40	Avoidanceâ€based human Pavlovianâ€ŧoâ€instrumental transfer. European Journal of Neuroscience, 2013, 38, 3740-3748.	1.2	57
41	Blunted medial prefrontal cortico-limbic reward-related effective connectivity and depression. Brain, 2020, 143, 1946-1956.	3.7	54
42	A Reward-Based Framework of Perceived Control. Frontiers in Neuroscience, 2019, 13, 65.	1.4	52
43	Positive autobiographical memory retrieval reduces temporal discounting. Social Cognitive and Affective Neuroscience, 2017, 12, 1584-1593.	1.5	49
44	Perceived Control Influences Neural Responses to Setbacks and Promotes Persistence. Neuron, 2014, 83, 1369-1375.	3.8	44
45	Reward-Related Learning via Multiple Memory Systems. Biological Psychiatry, 2012, 72, 134-141.	0.7	43
46	Weak ventral striatal responses to monetary outcomes predict an unwillingness to resist cigarette smoking. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 1196-1207.	1.0	43
47	Differential reward responses during competition against in- and out-of-network others. Social Cognitive and Affective Neuroscience, 2014, 9, 412-420.	1.5	36
48	Perceived control alters the effect of acute stress on persistence Journal of Experimental Psychology: General, 2016, 145, 356-365.	1.5	36
49	The effects of acute stress exposure on striatal activity during Pavlovian conditioning with monetary gains and losses. Frontiers in Behavioral Neuroscience, 2014, 8, 179.	1.0	32
50	Social closeness and feedback modulate susceptibility to the framing effect. Social Neuroscience, 2015, 10, 35-45.	0.7	29
51	Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility. Human Brain Mapping, 2015, 36, 2743-2755.	1.9	28
52	Distinct Reward Properties are Encoded via Corticostriatal Interactions. Scientific Reports, 2016, 6, 20093.	1.6	28
53	The role of right temporoparietal junction in processing social prediction error across relationship contexts. Social Cognitive and Affective Neuroscience, 2021, 16, 772-781.	1.5	26
54	Fool Me Once, Shame on You; Fool Me Twice, Shame on Oxytocin. Neuron, 2008, 58, 470-471.	3.8	24

#	Article	IF	CITATIONS
55	Corticostriatal Circuits Encode the Subjective Value of Perceived Control. Cerebral Cortex, 2019, 29, 5049-5060.	1.6	24
56	Representation of Subjective Value in the Striatum. , 2009, , 389-406.		23
57	The influence of relationship closeness on default-mode network connectivity during social interactions. Social Cognitive and Affective Neuroscience, 2020, 15, 261-271.	1.5	23
58	Two sides of the same coin: Learning via positive and negative reinforcers in the human striatum. Developmental Cognitive Neuroscience, 2011, 1, 494-505.	1.9	20
59	Contributions of the hippocampus to feedback learning. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 861-877.	1.0	20
60	Reward Sensitivity Enhances Ventrolateral Prefrontal Cortex Activation during Free Choice. Frontiers in Neuroscience, 2016, 10, 529.	1.4	20
61	Neural mechanisms of extinguishing drug and pleasant cue associations in human addiction: role of the VMPFC. Addiction Biology, 2019, 24, 88-99.	1.4	20
62	Reward-Driven Arousal Impacts Preparation to Perform a Task via Amygdala–Caudate Mechanisms. Cerebral Cortex, 2019, 29, 3010-3022.	1.6	18
63	Finding positive meaning in memories of negative events adaptively updates memory. Nature Communications, 2021, 12, 6601.	5.8	18
64	The Neurobiology of Personal Control During Reward Learning and Its Relationship to Mood. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 190-199.	1,1	17
65	Metaâ€analysis of psychophysiological interactions: Revisiting clusterâ€level thresholding and sample sizes. Human Brain Mapping, 2017, 38, 588-591.	1.9	16
66	Neurocomputational mechanisms of adaptive learning in social exchanges. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 985-997.	1.0	16
67	Neural response during anticipation of monetary loss is elevated in adult attention deficit hyperactivity disorder. World Journal of Biological Psychiatry, 2017, 18, 268-278.	1.3	15
68	Reappraisal and expected value modulate risk taking. Cognition and Emotion, 2014, 28, 172-181.	1.2	14
69	Pavlovian-to-Instrumental Transfer of Nicotine and Food Cues in Deprived Cigarette Smokers. Nicotine and Tobacco Research, 2017, 19, 670-676.	1.4	14
70	Ventromedial prefrontal cortex contributes to performance success by controlling reward-driven arousal representation in amygdala. NeuroImage, 2019, 202, 116136.	2.1	13
71	Motivational enhancement of cognitive control depends on depressive symptoms Emotion, 2014, 14, 646-650.	1.5	12
72	The social value of positive autobiographical memory retrieval Journal of Experimental Psychology: General, 2020, 149, 790-799.	1.5	12

#	Article	IF	CITATIONS
73	The Protective Effects of Perceived Control During Repeated Exposure to Aversive Stimuli. Frontiers in Neuroscience, 2021, 15, 625816.	1.4	7
74	How perception of control shapes decision making. Current Opinion in Behavioral Sciences, 2021, 41, 85-91.	2.0	6
75	Cambling on visual performance: neural correlates of metacognitive choice between visual lotteries. Frontiers in Neuroscience, 2015, 9, 314.	1.4	4
76	Neural response to monetary loss among youth with disruptive behavior disorders and callous-unemotional traits in the ABCD study. NeuroImage: Clinical, 2021, 32, 102810.	1.4	3
77	Neural responses to negative events and subsequent persistence behavior differ in individuals recovering from opioid use disorder compared to controls. American Journal of Drug and Alcohol Abuse, 2021, 47, 1-11.	1.1	2
78	Social nudges: utility conferred from others. Nature Neuroscience, 2015, 18, 791-792.	7.1	1
79	The unfairness of being prosocial. Nature Human Behaviour, 2017, 1, 711-712.	6.2	1
80	Neural systems for aversively motivated behavior. Advances in Motivation Science, 2022, , .	2.2	0
81	Trust and Reputation. , 2021, , 155-184.		ο