Hoyoung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9811191/publications.pdf Version: 2024-02-01

HOVOLING KIM

#	Article	IF	CITATIONS
1	High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Applied Surface Science, 2015, 349, 629-635.	6.1	85
2	AgIn dendrite catalysts for electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2017, 219, 123-131.	20.2	64
3	Non-precious metal electrocatalysts for hydrogen production in proton exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2017, 206, 608-616.	20.2	54
4	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy, 2021, 88, 106276.	16.0	49
5	An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer. Nanoscale, 2017, 9, 19045-19049.	5.6	44
6	A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Energy and Environmental Science, 2022, 15, 3449-3461.	30.8	44
7	Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis. International Journal of Hydrogen Energy, 2018, 43, 11326-11334.	7.1	43
8	Pulse-electrodeposited nickel phosphide for high-performance proton exchange membrane water electrolysis. Journal of Alloys and Compounds, 2019, 785, 296-304.	5.5	40
9	Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides. Applied Surface Science, 2015, 359, 227-235.	6.1	31
10	Electrochemically Fabricated NiW on a Cu Nanowire as a Highly Porous Non-Precious-Metal Cathode Catalyst for a Proton Exchange Membrane Water Electrolyzer. ACS Sustainable Chemistry and Engineering, 2019, 7, 8265-8273.	6.7	30
11	Electrodeposition-fabricated PtCu-alloy cathode catalysts for high-temperature proton exchange membrane fuel cells. Korean Journal of Chemical Engineering, 2018, 35, 1547-1555.	2.7	26
12	Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis. Applied Surface Science, 2018, 444, 303-311.	6.1	23
13	Facile electrochemical preparation of nonprecious Coâ€Cu alloy catalysts for hydrogen production in proton exchange membrane water electrolysis. International Journal of Energy Research, 2020, 44, 2833-2844.	4.5	22
14	Facile fabrication of amorphous NiMo catalysts for alkaline hydrogen oxidation reaction. Journal of Industrial and Engineering Chemistry, 2021, 94, 309-316.	5.8	19
15	Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition. Journal of Power Sources, 2019, 438, 227022.	7.8	17
16	Multicomponent nonprecious hydrogen evolution catalysts for high performance and durable proton exchange membrane water electrolyzer. Journal of Power Sources, 2021, 506, 230200.	7.8	17
17	Design of nanocatalyst for electrode structure: Electrophoretic deposition of iron phosphide nanoparticles to produce a highly active hydrogen evolution reaction catalyst. Chemical Engineering Journal, 2022, 431, 133217.	12.7	15
18	Binder-coated electrodeposited PtNiCu catalysts for the oxygen reduction reaction in high-temperature polymer electrolyte membrane fuel cells. Applied Surface Science, 2020, 510, 145444.	6.1	14

Ноуоинд Кім

#	Article	IF	CITATIONS
19	Electrochemically Fabricated Pd–In Catalysts for Carbon Dioxideâ€Formate/Formic Acid Interâ€Conversion. Bulletin of the Korean Chemical Society, 2017, 38, 607-613.	1.9	13
20	Pd–Sn Alloy Electrocatalysts for Interconversion Between Carbon Dioxide and Formate/Formic Acid. Journal of Nanoscience and Nanotechnology, 2017, 17, 7547-7555.	0.9	13
21	Ag-deposited Ti gas diffusion electrode in proton exchange membrane CO2 electrolyzer for CO production. Journal of Industrial and Engineering Chemistry, 2020, 82, 374-382.	5.8	13
22	Electrochemical Reduction of Carbon Dioxide Using Ag Catalysts Prepared by Electrodeposition in the Presence of Additives. Journal of Nanoscience and Nanotechnology, 2017, 17, 7843-7851.	0.9	12
23	Fabrication of Large Area Ag Gas Diffusion Electrode via Electrodeposition for Electrochemical CO2 Reduction. Coatings, 2020, 10, 341.	2.6	12
24	Acidâ€durable, highâ€performance cobalt phosphide catalysts for hydrogen evolution in proton exchange membrane water electrolysis. International Journal of Energy Research, 2021, 45, 16842-16855.	4.5	12
25	Electrochemical Conversion of Carbon Dioxide to Formic Acid on Sn–Zn Alloy Catalysts Prepared by Electrodeposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 10470-10474.	0.9	10
26	Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid. International Journal of Hydrogen Energy, 2020, 45, 32844-32855.	7.1	8
27	Electrodeposited <scp>NiRh</scp> alloy as an efficient lowâ€precious metal catalyst for alkaline hydrogen oxidation reaction. International Journal of Energy Research, 2021, 45, 5325-5336.	4.5	8
28	Restructured <scp>Coâ€Ru</scp> alloys via electrodeposition for efficient hydrogen production in proton exchange membrane water electrolyzers. International Journal of Energy Research, 2022, 46, 7975-7987.	4.5	7
29	Electrodeposition-fabricated catalysts for polymer electrolyte water electrolysis. Korean Journal of Chemical Engineering, 2020, 37, 1275-1294.	2.7	6
30	Electrochemical Preparation of Ru/Co Biâ€layered Catalysts on Ti Substrates for the Oxygen Evolution Reaction. Bulletin of the Korean Chemical Society, 2016, 37, 1270-1277.	1.9	5
31	Chemical transformation of solution-processed Ag nanocrystal thin films into electrically conductive and catalytically active Pt-based nanostructures. Journal of Industrial and Engineering Chemistry, 2019, 76, 388-395.	5.8	3