Dejian Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/98111/publications.pdf Version: 2024-02-01

ΠΕΠΑΝΙ ΕΠ

#	Article	IF	CITATIONS
1	The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 2017, 10, 59-81.	3.1	271
2	The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 2018, 18, 5699-5745.	4.9	259
3	The Orbiting Carbon Observatory-2: first 18Âmonths of science data products. Atmospheric Measurement Techniques, 2017, 10, 549-563.	3.1	180
4	Quantification of uncertainties in OCO-2 measurements of XCO ₂ : simulations and linear error analysis. Atmospheric Measurement Techniques, 2016, 9, 5227-5238.	3.1	79
5	Characterization of ozone profiles derived from Aura TES and OMI radiances. Atmospheric Chemistry and Physics, 2013, 13, 3445-3462.	4.9	74
6	Mapping CH ₄ : CO ₂ ratios in Los Angeles with CLARS-FTS from Mount Wilson, California. Atmospheric Chemistry and Physics, 2015, 15, 241-252.	4.9	69
7	Balance of Emission and Dynamical Controls on Ozone During the Koreaâ€United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 387-413.	3.3	51
8	High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI. Atmospheric Measurement Techniques, 2016, 9, 2567-2579.	3.1	46
9	Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation. Atmospheric Measurement Techniques, 2018, 11, 5587-5605.	3.1	43
10	Direct retrieval of isoprene from satellite-based infrared measurements. Nature Communications, 2019, 10, 3811.	12.8	42
11	Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmospheric Measurement Techniques, 2018, 11, 971-995.	3.1	39
12	Near-infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site. Atmospheric Measurement Techniques, 2014, 7, 713-729.	3.1	35
13	The portable atmospheric research interferometric spectrometer for the infrared, PARIS-IR. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 103, 362-370.	2.3	33
14	Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection. Atmospheric Chemistry and Physics, 2017, 17, 6113-6124.	4.9	28
15	Simultaneous ground-based observations of O ₃ , HCl, N ₂ 0, and CH ₄ over Toronto, Canada by three Fourier transform spectrometers with different resolutions. Atmospheric Chemistry and Physics, 2007, 7, 1275-1292.	4.9	27
16	Global phosgene observations from the Atmospheric Chemistry Experiment (ACE) mission. Geophysical Research Letters, 2007, 34, .	4.0	26
17	Global carbon tetrachloride distributions obtained from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2009, 9, 7449-7459.	4.9	26
18	Averaging kernel prediction from atmospheric and surface state parameters based on multiple regression for nadir-viewing satellite measurements of carbon monoxide and ozone. Atmospheric Measurement Techniques, 2013, 6, 1633-1646.	3.1	21

Dejian Fu

#	Article	IF	CITATIONS
19	Aerosol scattering effects on water vapor retrievals over the Los Angeles Basin. Atmospheric Chemistry and Physics, 2017, 17, 2495-2508.	4.9	21
20	N2O and O3 arctic column amounts from PARIS-IR observations: Retrievals, characterization and error analysis. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 385-406.	2.3	20
21	Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor. Atmospheric Measurement Techniques, 2019, 12, 2331-2339.	3.1	18
22	First global observations of atmospheric COCIF from the Atmospheric Chemistry Experiment mission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 974-985.	2.3	15
23	Evaluation of single-footprint AIRS CH ₄ profile retrieval uncertainties using aircraft profile measurements. Atmospheric Measurement Techniques, 2021, 14, 335-354.	3.1	15
24	Ground-based solar absorption studies for the Carbon Cycle science by Fourier Transform Spectroscopy (CC-FTS) mission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 2219-2243.	2.3	13
25	Accounting for aerosol scattering in the CLARS retrieval of column averaged CO ₂ mixing ratios. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7205-7218.	3.3	13
26	Infrared and near infrared emission spectra of SbH and SbD. Journal of Molecular Spectroscopy, 2005, 229, 257-265.	1.2	9
27	Simultaneous trace gas measurements using two Fourier transform spectrometers at Eureka, Canada during spring 2006, and comparisons with the ACE-FTS. Atmospheric Chemistry and Physics, 2011, 11, 5383-5405.	4.9	9
28	Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013. Atmospheric Measurement Techniques, 2017, 10, 3273-3294.	3.1	9
29	Infrared and near infrared emission spectra of TeH and TeD. Journal of Molecular Spectroscopy, 2005, 230, 105-116.	1.2	7
30	The Vibrationâ^'Rotation Emission Spectrum of Gaseous HZnCl. Journal of Physical Chemistry A, 2005, 109, 4092-4094.	2.5	7
31	Intercomparison of ground-based ozone and NO ₂ measurements during the MANTRA 2004 campaign. Atmospheric Chemistry and Physics, 2007, 7, 5489-5499.	4.9	7
32	Comparison of optimal estimation HDOâ^•H ₂ O retrievals from AIRS with ORACLES measurements. Atmospheric Measurement Techniques, 2020, 13, 1825-1834.	3.1	6
33	Aerosol profiling using radiometric and polarimetric spectral measurements in the O2 near infrared bands: Estimation of information content and measurement uncertainties. Remote Sensing of Environment, 2021, 253, 112179.	11.0	5
34	An Ultraâ€Broadband High Efficiency Polarization Beam Splitter for High Spectral Resolution Polarimetric Imaging in the Near Infrared. Advanced Science, 2022, 9, .	11.2	5
35	Characterization of pollution transport into Texas using OMI and TES satellite, GIS and in situ data, and HYSPLIT back trajectory analyses: implications for TCEQ State Implementation Plans. Air Quality, Atmosphere and Health, 2016, 9, 569-588.	3.3	4
36	Stability Assessment of OCO-2 Radiometric Calibration Using Aqua MODIS as a Reference. Remote Sensing, 2020, 12, 1269.	4.0	4

Dejian Fu

#	Article	IF	CITATIONS
37	Command and data handling system for the Panchromatic Fourier Transform Spectrometer. , 2012, , .		3
38	CARBO-The Carbon Observatory Instrument Suite: the next generation of Earth observing instruments for global monitoring of carbon gases. , 2018, , .		0
39	Specifying polarimetric tolerances of a high-resolution imaging multiple-species atmospheric profiler (HiMAP). , 2019, , .		Ο
40	The Carbon Balance Observatory (CARBO) instrument for remote sensing of greenhouse gases from space. , 2019, , .		0