List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9811057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FUNDAMENTALS OF PLANARIAN REGENERATION. Annual Review of Cell and Developmental Biology, 2004, 20, 725-757.	9.4	921
2	Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science, 2011, 332, 811-816.	12.6	555
3	SMEDWI-2 Is a PIWI-Like Protein That Regulates Planarian Stem Cells. Science, 2005, 310, 1327-1330.	12.6	543
4	The Cellular Basis for Animal Regeneration. Developmental Cell, 2011, 21, 172-185.	7.0	463
5	Wnt Signaling and the Polarity of the Primary Body Axis. Cell, 2009, 139, 1056-1068.	28.9	436
6	CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biology, 2000, 2, 131-136.	10.3	388
7	Identification of Genes Needed for Regeneration, Stem Cell Function, and Tissue Homeostasis by Systematic Gene Perturbation in Planaria. Developmental Cell, 2005, 8, 635-649.	7.0	386
8	Cell type transcriptome atlas for the planarian <i>Schmidtea mediterranea</i> . Science, 2018, 360, .	12.6	341
9	<i>Smed-</i> β <i>catenin-1</i> Is Required for Anteroposterior Blastema Polarity in Planarian Regeneration. Science, 2008, 319, 327-330.	12.6	334
10	Phagocytosis promotes programmed cell death in C. elegans. Nature, 2001, 412, 198-202.	27.8	327
11	Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, 2010, 344, 979-991.	2.0	291
12	Single-Cell Analysis Reveals Functionally Distinct Classes within the Planarian Stem Cell Compartment. Cell Stem Cell, 2014, 15, 326-339.	11.1	262
13	Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11861-11865.	7.1	260
14	The Cellular and Molecular Basis for Planarian Regeneration. Cell, 2018, 175, 327-345.	28.9	234
15	THE ENGULFMENT PROCESS OF PROGRAMMED CELL DEATH INCAENORHABDITIS ELEGANS. Annual Review of Cell and Developmental Biology, 2004, 20, 193-221.	9.4	229
16	A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the United States of America, 2009, 106, 17061-17066.	7.1	218
17	A molecular wound response program associated with regeneration initiation in planarians. Genes and Development, 2012, 26, 988-1002.	5.9	212
18	Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling. ELife, 2013, 2, e00247.	6.0	211

#	Article	IF	CITATIONS
19	Muscle Cells Provide Instructions for Planarian Regeneration. Cell Reports, 2013, 4, 633-641.	6.4	210
20	Polarized <i>notum</i> Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration. Science, 2011, 332, 852-855.	12.6	204
21	Neoblast Specialization in Regeneration of the Planarian Schmidtea mediterranea. Stem Cell Reports, 2014, 3, 339-352.	4.8	186
22	A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Developmental Cell, 2015, 35, 632-645.	7.0	184
23	Genetic Regulators of a Pluripotent Adult Stem Cell System in Planarians Identified by RNAi and Clonal Analysis. Cell Stem Cell, 2012, 10, 299-311.	11.1	182
24	Transcriptome Analysis of the Planarian Eye Identifies ovo as a Specific Regulator of Eye Regeneration. Cell Reports, 2012, 2, 294-307.	6.4	174
25	BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development (Cambridge), 2007, 134, 4043-4051.	2.5	156
26	Whole-Body Acoel Regeneration Is Controlled by Wnt and Bmp-Admp Signaling. Current Biology, 2014, 24, 1107-1113.	3.9	155
27	A regulatory program for excretory system regeneration in planarians. Development (Cambridge), 2011, 138, 4387-4398.	2.5	139
28	Acoel genome reveals the regulatory landscape of whole-body regeneration. Science, 2019, 363, .	12.6	125
29	dlx and sp6-9 Control Optic Cup Regeneration in a Prototypic Eye. PLoS Genetics, 2011, 7, e1002226.	3.5	118
30	Orthogonal muscle fibres have different instructive roles in planarian regeneration. Nature, 2017, 551, 623-628.	27.8	107
31	A Bmp/Admp Regulatory Circuit Controls Maintenance and Regeneration of Dorsal-Ventral Polarity in Planarians. Current Biology, 2011, 21, 294-299.	3.9	96
32	Specialized progenitors and regeneration. Development (Cambridge), 2013, 140, 951-957.	2.5	96
33	The Mi-2-like <i>Smed-CHD4</i> gene is required for stem cell differentiation in the planarian <i>Schmidtea mediterranea</i> . Development (Cambridge), 2010, 137, 1231-1241.	2.5	93
34	Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. ELife, 2016, 5, .	6.0	90
35	The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Developmental Biology, 2010, 337, 148-156.	2.0	87
36	Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends in Genetics, 2011, 27, 277-285.	6.7	84

#	Article	IF	CITATIONS
37	Mutational Analysis of the Caenorhabditis elegans Cell-Death Gene ced-3. Genetics, 1999, 153, 1655-1671.	2.9	82
38	A forkhead Transcription Factor Is Wound-Induced at the Planarian Midline and Required for Anterior Pole Regeneration. PLoS Genetics, 2014, 10, e1003999.	3.5	76
39	Planarian Epidermal Stem Cells Respond to Positional Cues to Promote Cell-Type Diversity. Developmental Cell, 2017, 40, 491-504.e5.	7.0	72
40	Hedgehog signaling regulates gene expression in planarian glia. ELife, 2016, 5, .	6.0	58
41	Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nature Communications, 2019, 10, 1592.	12.8	57
42	A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes. ELife, 2016, 5, .	6.0	56
43	<i>pbx</i> is required for pole and eye regeneration in planarians. Development (Cambridge), 2013, 140, 719-729.	2.5	52
44	Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell, 2021, 28, 1307-1322.e5.	11.1	51
45	foxF-1 Controls Specification of Non-body Wall Muscle and Phagocytic Cells in Planarians. Current Biology, 2018, 28, 3787-3801.e6.	3.9	49
46	Self-organization and progenitor targeting generate stable patterns in planarian regeneration. Science, 2018, 360, 404-409.	12.6	40
47	Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration. Developmental Cell, 2017, 40, 381-391.e3.	7.0	37
48	Acoel regeneration mechanisms indicate an ancient role for muscle in regenerative patterning. Nature Communications, 2017, 8, 1260.	12.8	36
49	Cellular and Molecular Responses Unique to Major Injury Are Dispensable for Planarian Regeneration. Cell Reports, 2018, 25, 2577-2590.e3.	6.4	35
50	DPL-1 DP, LIN-35 Rb and EFL-1 E2F Act With the MCD-1 Zinc-Finger Protein to Promote Programmed Cell Death in Caenorhabditis elegans. Genetics, 2007, 175, 1719-1733.	2.9	34
51	Landmarks in Existing Tissue at Wounds Are Utilized to Generate Pattern in Regenerating Tissue. Current Biology, 2017, 27, 733-742.	3.9	34
52	Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science, 2020, 368, .	12.6	29
53	<i>teashirt</i> is required for head-versus-tail regeneration polarity in planarians. Development (Cambridge), 2015, 142, 1062-72.	2.5	28
54	A small set of conserved genes, including sp5 and Hox, are activated by Wnt signaling in the posterior of planarians and acoels. PLoS Genetics, 2019, 15, e1008401.	3.5	25

#	Article	IF	CITATIONS
55	Gene nomenclature guidelines for the planarian <i>Schmidtea mediterranea</i> . Developmental Dynamics, 2008, 237, 3099-3101.	1.8	23
56	Nuclear receptor NR4A is required for patterning at the ends of the planarian anterior-posterior axis. ELife, 2019, 8, .	6.0	17
57	activin-2 is required for regeneration of polarity on the planarian anterior-posterior axis. PLoS Genetics, 2021, 17, e1009466.	3.5	14
58	Clonal Analysis of Planarian Stem Cells by Subtotal Irradiation and Single-Cell Transplantation. Methods in Molecular Biology, 2018, 1774, 479-495.	0.9	11
59	Principles of regeneration revealed by the planarian eye. Current Opinion in Cell Biology, 2021, 73, 19-25.	5.4	11
60	The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nature Communications, 2022, 13, 2726.	12.8	11
61	A Krüppel-like factor is required for development and regeneration of germline and yolk cells from somatic stem cells in planarians. PLoS Biology, 2022, 20, e3001472.	5.6	10
62	Lin28: Time for Tissue Repair. Cell, 2013, 155, 738-739.	28.9	8
63	Editorial overview: Cell reprogramming, regeneration and repair. Current Opinion in Genetics and Development, 2016, 40, iv-vi.	3.3	4
64	The cells of regeneration. Science, 2019, 365, 314-316.	12.6	4
65	Gene nomenclature guidelines for the planarianSchmidtea mediterranea. Developmental Dynamics, 2008, 237, spcone-spcone.	1.8	0
66	Title is missing!. , 2019, 15, e1008401.		0
67	Title is missing!. , 2019, 15, e1008401.		0
68	Title is missing!. , 2019, 15, e1008401.		0
69	Title is missing!. , 2019, 15, e1008401.		Ο