
## Xiangjun Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980993/publications.pdf Version: 2024-02-01



XIANCIUN CONC

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111408.                                              | 5.0  | 7         |
| 2  | Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Frontiers in Microbiology, 2021, 12, 634555.                                         | 3.5  | 10        |
| 3  | Cation-amino acid interactions: Implications for protein destabilization. Biochemical and Biophysical<br>Research Communications, 2021, 548, 47-52.                                                                 | 2.1  | 0         |
| 4  | Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy. Journal of Materials Science and Technology, 2021, 84, 200-207.                                             | 10.7 | 14        |
| 5  | Reduction, Prevention, and Control of Salmonella enterica Viable but Non-culturable Cells in Flour<br>Food. Frontiers in Microbiology, 2020, 11, 1859.                                                              | 3.5  | 7         |
| 6  | Microscale topographic surfaces modulate three-dimensional migration of human spermatozoa.<br>Colloids and Surfaces B: Biointerfaces, 2020, 193, 111096.                                                            | 5.0  | 5         |
| 7  | Method for 3D tracking behaviors of interplaying bacteria individuals. Optics Express, 2020, 28, 28060.                                                                                                             | 3.4  | 9         |
| 8  | Investigation of Formation of Bacterial Biofilm upon Dead Siblings. Langmuir, 2019, 35, 7405-7413.                                                                                                                  | 3.5  | 19        |
| 9  | Three-Dimensional Bacterial Motions near a Surface Investigated by Digital Holographic Microscopy:<br>Effect of Surface Stiffness. Langmuir, 2019, 35, 12257-12263.                                                 | 3.5  | 28        |
| 10 | Alternating electric fields induce a period-dependent motion of <i>Escherichia coli</i> in three-dimension near a conductive surface. Biointerphases, 2019, 14, 011005.                                             | 1.6  | 3         |
| 11 | Probing Sol–Gel Matrices and Dynamics of Star PEG Hydrogels Near Overlap Concentration.<br>Macromolecules, 2019, 52, 8956-8966.                                                                                     | 4.8  | 24        |
| 12 | Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Applied<br>Materials & Interfaces, 2018, 10, 6593-6600.                                                                       | 8.0  | 25        |
| 13 | Saltâ€induced formation of DNA double helices from single stranded DNA investigated by analytical ultracentrifugation. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 501-508.                      | 2.1  | 1         |
| 14 | Near-surface microrheology reveals dynamics and viscoelasticity of soft matter. Soft Matter, 2018, 14,<br>9764-9776.                                                                                                | 2.7  | 10        |
| 15 | Improving axial resolution for holographic tracking of colloids and bacteria over a wide depth of field by optimizing different factors. Optics Express, 2018, 26, 9920.                                            | 3.4  | 9         |
| 16 | Landing Dynamics of Swimming Bacteria on a Polymeric Surface: Effect of Surface Properties.<br>Langmuir, 2017, 33, 3525-3533.                                                                                       | 3.5  | 44        |
| 17 | Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers.<br>Langmuir, 2017, 33, 13098-13104.                                                                                       | 3.5  | 27        |
| 18 | Removing the effect of blooming from potential energy measurement by employing total internal reflection microscopy integrated with video microscopy. Journal of Colloid and Interface Science, 2017, 503, 142-149. | 9.4  | 3         |

XIANGJUN GONG

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment. Colloids and Surfaces B: Biointerfaces, 2017, 150, 279-287.      | 5.0 | 7         |
| 20 | Mechanical Insight into Resistance of Betaine to Urea-Induced Protein Denaturation. Journal of Physical Chemistry B, 2016, 120, 12327-12333.                              | 2.6 | 12        |
| 21 | Microrheology of growing <i>Escherichia coli</i> biofilms investigated by using magnetic force modulation atomic force microscopy. Biointerphases, 2016, 11, 041005.      | 1.6 | 5         |
| 22 | Surface Roughness Modulates Diffusion and Fibrillation of Amyloid-β Peptide. Langmuir, 2016, 32,<br>8238-8244.                                                            | 3.5 | 53        |
| 23 | Measuring the Surface–Surface Interactions Induced by Serum Proteins in a Physiological<br>Environment. Langmuir, 2016, 32, 12129-12136.                                  | 3.5 | 9         |
| 24 | Measurements of Long-Range Interactions between Protein-Functionalized Surfaces by Total Internal Reflection Microscopy. Langmuir, 2015, 31, 3101-3107.                   | 3.5 | 10        |
| 25 | Investigation of cell behaviors on thermo-responsive PNIPAM microgel films. Colloids and Surfaces B:<br>Biointerfaces, 2015, 132, 202-207.                                | 5.0 | 26        |
| 26 | Tuning the Particle–Surface Interactions in Aqueous Solutions by Soft Microgel Particles. Langmuir, 2014, 30, 13182-13190.                                                | 3.5 | 8         |
| 27 | Direct measurements of particle–surface interactions in aqueous solutions with total internal reflection microscopy. Chemical Communications, 2014, 50, 6556-6570.        | 4.1 | 33        |
| 28 | Mapping Phase Diagrams of Polymer Solutions by a Combination of Microfluidic Solution Droplets and Laser Light-Scattering Detection. Macromolecules, 2014, 47, 2496-2502. | 4.8 | 10        |
| 29 | Investigating interactions between cationic particles and polyelectrolyte brushes with Total Internal<br>Reflection Microscopy (TIRM). Polymer Chemistry, 2013, 4, 4356.  | 3.9 | 12        |
| 30 | An active one-particle microrheometer: Incorporating magnetic tweezers to total internal reflection microscopy. Review of Scientific Instruments, 2013, 84, 033702.       | 1.3 | 7         |
| 31 | Interactions between Solid Surfaces with Preadsorbed Poly(ethylenimine) (PEI) Layers: Effect of<br>Unadsorbed Free PEI Chains. Langmuir, 2013, 29, 5974-5981.             | 3.5 | 20        |
| 32 | A portable, stable and precise laser differential refractometer. Review of Scientific Instruments, 2013,<br>84, 114103.                                                   | 1.3 | 5         |