
Helen E Heslop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inducible Apoptosis as a Safety Switch for Adoptive Cell Therapy. New England Journal of Medicine, 2011, 365, 1673-1683.	13.9	1,264
2	Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 2008, 14, 1264-1270.	15.2	1,063
3	Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood, 2011, 118, 6050-6056.	0.6	984
4	CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. Journal of Clinical Investigation, 2011, 121, 1822-1826.	3.9	876
5	Long–term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene–modified virus–specific T lymphocytes. Nature Medicine, 1996, 2, 551-555.	15.2	820
6	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	0.8	778
7	Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115, 925-935.	0.6	721
8	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	3.4	608
9	An inducible caspase 9 safety switch for T-cell therapy. Blood, 2005, 105, 4247-4254.	0.6	607
10	Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine, 2006, 12, 1160-1166.	15.2	536
11	Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 2014, 123, 3750-3759.	0.6	534
12	Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood, 2013, 121, 5113-5123.	0.6	507
13	Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122, 2965-2973.	0.6	470
14	T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood, 2009, 113, 6392-6402.	0.6	458
15	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	0.8	433
16	A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular Therapy, 2005, 12, 933-941.	3.7	426
17	Post-Transplant Lymphoproliferative Disorders. Annual Review of Medicine, 2005, 56, 29-44.	5.0	395
18	CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 2017, 25, 2214-2224.	3.7	378

#	Article	IF	CITATIONS
19	Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease. Journal of Experimental Medicine, 2004, 200, 1623-1633.	4.2	371
20	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	0.8	367
21	Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT. Science Translational Medicine, 2014, 6, 242ra83.	5.8	357
22	Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood, 2005, 105, 1898-1904.	0.6	344
23	HER2-Specific T Cells Target Primary Glioblastoma Stem Cells and Induce Regression of Autologous Experimental Tumors. Clinical Cancer Research, 2010, 16, 474-485.	3.2	324
24	Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood, 2009, 114, 4283-4292.	0.6	311
25	Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	0.6	310
26	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	3.9	301
27	Combinational Targeting Offsets Antigen Escape and Enhances Effector Functions of Adoptively Transferred T Cells in Glioblastoma. Molecular Therapy, 2013, 21, 2087-2101.	3.7	300
28	How I treat EBV lymphoproliferation. Blood, 2009, 114, 4002-4008.	0.6	287
29	Infusion of Cytotoxic T Cells for the Prevention and Treatment of Epstein-Barr Virus–Induced Lymphoma in Allogeneic Transplant Recipients. Blood, 1998, 92, 1549-1555.	0.6	269
30	Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110, 2838-2845.	0.6	266
31	Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood, 2015, 125, 3905-3916.	0.6	260
32	T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood, 2006, 108, 3890-3897.	0.6	258
33	An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001, 97, 835-843.	0.6	249
34	Quantitative EBV Viral Loads and Immunosuppression Alterations can Decrease PTLD Incidence in Pediatric Liver Transplant Recipients. American Journal of Transplantation, 2005, 5, 2222-2228.	2.6	245
35	Treatment of solid organ transplant recipients with autologous Epstein Barr virus–specific cytotoxic T lymphocytes (CTLs). Blood, 2006, 108, 2942-2949.	0.6	241
36	Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood, 2011, 117, 5835-5849.	0.6	241

#	Article	IF	CITATIONS
37	Clinical responses with T lymphocytes targeting malignancy-associated \hat{I}^{o} light chains. Journal of Clinical Investigation, 2016, 126, 2588-2596.	3.9	241
38	Rapidly Generated Multivirus-specific Cytotoxic T Lymphocytes for the Prophylaxis and Treatment of Viral Infections. Molecular Therapy, 2012, 20, 1622-1632.	3.7	238
39	Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. Journal of Clinical Oncology, 2020, 38, 3794-3804.	0.8	235
40	T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature Reviews Clinical Oncology, 2012, 9, 510-519.	12.5	230
41	Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood, 2004, 103, 3979-3981.	0.6	219
42	Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Molecular Therapy, 2017, 25, 249-258.	3.7	217
43	Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Molecular Therapy, 2013, 21, 2113-2121.	3.7	200
44	Adoptive cellular immunotherapy for EBV lymphoproliferative diseases. Immunological Reviews, 1997, 157, 217-222.	2.8	199
45	Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood, 2015, 125, 4103-4113.	0.6	188
46	Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood, 2003, 101, 1905-1912.	0.6	182
47	Inducible Caspase 9 Suicide Gene to Improve the Safety of Allodepleted T Cells after Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2007, 13, 913-924.	2.0	181
48	InÂVivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Molecular Therapy, 2018, 26, 2727-2737.	3.7	180
49	T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood, 2016, 127, 3331-3340.	0.6	177
50	Ultra Low-Dose IL-2 for GVHD Prophylaxis after Allogeneic Hematopoietic Stem Cell Transplantation Mediates Expansion of Regulatory T Cells without Diminishing Antiviral and Antileukemic Activity. Clinical Cancer Research, 2014, 20, 2215-2225.	3.2	176
51	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	2.3	172
52	Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression. Molecular Therapy, 2009, 17, 1779-1787.	3.7	171
53	Outcomes of transplantation with matched-sibling and unrelateddonor bone marrow in children with leukaemia. Lancet, The, 1997, 350, 767-771.	6.3	167
54	Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood, 2014, 123, 3895-3905.	0.6	161

#	Article	IF	CITATIONS
55	Regression of Experimental Medulloblastoma following Transfer of HER2-Specific T Cells. Cancer Research, 2007, 67, 5957-5964.	0.4	153
56	Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor. Molecular Therapy, 2014, 22, 1211-1220.	3.7	145
57	Accelerated Production of Antigen-specific T Cells for Preclinical and Clinical Applications Using Gas-permeable Rapid Expansion Cultureware (G-Rex). Journal of Immunotherapy, 2010, 33, 305-315.	1.2	144
58	Autologous Epstein-Barr virus (EBV)–specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood, 2002, 100, 4059-4066.	0.6	141
59	Evidence for the Presentation of Major Histocompatibility Complex Class l–restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocytes. Journal of Experimental Medicine, 2004, 199, 459-470.	4.2	140
60	Selective depletion of donor alloreactive T cells without loss of antiviral or antileukemic responses. Blood, 2003, 102, 2292-2299.	0.6	139
61	Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood, 2018, 132, 89-100.	0.6	139
62	Fine-tuning the CAR spacer improves T-cell potency. Oncolmmunology, 2016, 5, e1253656.	2.1	137
63	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	0.8	137
64	Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, 2305-2321.	2.0	132
65	Identification of Hexon-Specific CD4 and CD8 T-Cell Epitopes for Vaccine and Immunotherapy. Journal of Virology, 2008, 82, 546-554.	1.5	129
66	CAR-T Cell Therapy for Lymphoma. Annual Review of Medicine, 2016, 67, 165-183.	5.0	123
67	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	1.5	117
68	Production of Genetically Modified Epstein-Barr Virus-Specific Cytotoxic T Cells for Adoptive Transfer to Patients at High Risk of EBV-Associated Lymphoproliferative Disease. Stem Cells and Development, 1995, 4, 73-79.	1.0	115
69	Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells. Molecular Therapy, 2014, 22, 623-633.	3.7	113
70	Adoptive T cell therapy of cancer. Current Opinion in Immunology, 2010, 22, 251-257.	2.4	111
71	Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood, 2009, 113, 2442-2450.	0.6	107
72	Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood, 2010, 115, 2695-2703.	0.6	105

#	Article	IF	CITATIONS
73	Adoptive Immunotherapy for EBV-associated Malignancies. Leukemia and Lymphoma, 2005, 46, 1-10.	0.6	104
74	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	5.8	103
75	Generation of EBV-Specific CD4+ Cytotoxic T Cells from Virus Naive Individuals. Journal of Immunology, 2002, 168, 909-918.	0.4	101
76	High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood, 2011, 117, 3353-3362.	0.6	100
77	Most Closely HLA-Matched Allogeneic Virus Specific Cytotoxic T-Lymphocytes (CTL) to Treat Persistent Reactivation or Infection with Adenovirus, CMV and EBV After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2010, 116, 829-829.	0.6	98
78	Comparable Outcomes of Matched-Related and Alternative Donor Stem Cell Transplantation for Pediatric Severe Aplastic Anemia. Biology of Blood and Marrow Transplantation, 2006, 12, 1277-1284.	2.0	96
79	Biology and Treatment of Epstein-Barr Virus–Associated Non-Hodgkin Lymphomas. Hematology American Society of Hematology Education Program, 2005, 2005, 260-266.	0.9	95
80	CMV-specific T cells generated from naÃ ⁻ ve T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	5.8	93
81	Genetic Manipulation of Tumor-specific Cytotoxic T Lymphocytes to Restore Responsiveness to IL-7. Molecular Therapy, 2009, 17, 880-888.	3.7	88
82	Generation of Epstein-Barr virus–specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood, 2009, 114, 4784-4791.	0.6	86
83	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)–an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019. 54. 1868-1880.	1.3	86
84	Administration of Neomycin Resistance Gene Marked EBV Specific Cytotoxic T Lymphocytes to Recipients of Mismatched-Related or Phenotypically Similar Unrelated Donor Marrow Grafts. St. Jude Children's Research Hospital, Memphis, Tennesse. Human Gene Therapy, 1994, 5, 381-397.	1.4	85
85	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25. e76-e85.	2.0	85
86	Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. Brain, 2004, 127, 996-1008.	3.7	84
87	Scalable Manufacturing of CAR T Cells for Cancer Immunotherapy. Blood Cancer Discovery, 2021, 2, 408-422.	2.6	84
88	A phase 2/3 multicenter randomized clinical trial of ABX-CBL versus ATG as secondary therapy for steroid-resistant acute graft-versus-host disease. Blood, 2007, 109, 2657-2662.	0.6	83
89	GENERATION OF AUTOLOGOUS EPSTEIN-BARR VIRUS???SPECIFIC CYTOTOXIC T CELLS FOR ADOPTIVE IMMUNOTHERAPY IN SOLID ORGAN TRANSPLANT RECIPIENTS1. Transplantation, 2001, 72, 1078-1086.	0.5	81
90	Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: A potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. International Journal of Cancer, 2001, 93, 706-713.	2.3	80

#	Article	IF	CITATIONS
91	An Inducible Caspase 9 Suicide Gene to Improve the Safety of Mesenchymal Stromal Cell Therapies. Stem Cells, 2010, 28, 1107-1115.	1.4	80
92	Posttransplant lymphoproliferative disease following liver transplantation. Current Opinion in Organ Transplantation, 2011, 16, 274-280.	0.8	80
93	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	3.7	80
94	Definitions of histocompatibility typing terms. Blood, 2011, 118, e180-e183.	0.6	79
95	Randomized Phase III BMT CTN Trial of Calcineurin Inhibitor–Free Chronic Graft-Versus-Host Disease Interventions in Myeloablative Hematopoietic Cell Transplantation for Hematologic Malignancies. Journal of Clinical Oncology, 2022, 40, 356-368.	0.8	79
96	Adoptive immunotherapy for posttransplantation viral infections. Biology of Blood and Marrow Transplantation, 2004, 10, 143-155.	2.0	76
97	Immunotherapeutic strategies to prevent and treat human herpesvirus 6 reactivation after allogeneic stem cell transplantation. Blood, 2013, 121, 207-218.	0.6	76
98	Cellular Immunity to Epstein-Barr Virus in Liver Transplant Recipients Treated with Rituximab for Post-Transplant Lymphoproliferative Disease. American Journal of Transplantation, 2005, 5, 566-572.	2.6	75
99	Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy, 2010, 12, 743-749.	0.3	75
100	A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Therapy, 2004, 11, 81-91.	2.2	74
101	Characterization of Latent Membrane Protein 2 Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. Journal of Immunology, 2005, 175, 4137-4147.	0.4	72
102	Improving T-cell Therapy for Relapsed EBV-Negative Hodgkin Lymphoma by Targeting Upregulated MAGE-A4. Clinical Cancer Research, 2011, 17, 7058-7066.	3.2	72
103	Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood, 2006, 107, 1332-1341.	0.6	71
104	Safer CARS. Molecular Therapy, 2010, 18, 661-662.	3.7	71
105	Optimizing the production of suspension cells using the G-Rex "M―series. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14015.	1.8	71
106	Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nature Biotechnology, 2021, 39, 56-63.	9.4	71
107	Intravenous Cidofovir therapy for disseminated adenovirus in a pediatric liver transplant recipient. Transplantation, 2002, 74, 1050-1052.	0.5	68
108	Nucleofection of DCs to Generate Multivirus-specific T Cells for Prevention or Treatment of Viral Infections in the Immunocompromised Host. Molecular Therapy, 2009, 17, 1616-1625.	3.7	68

#	Article	IF	CITATIONS
109	Interleukin 15 Provides Relief to CTLs from Regulatory T Cell–Mediated Inhibition: Implications for Adoptive T Cell–Based Therapies for Lymphoma. Clinical Cancer Research, 2013, 19, 106-117.	3.2	68
110	Immunotherapy of Hematologic Malignancy. Hematology American Society of Hematology Education Program, 2003, 2003, 331-349.	0.9	67
111	Excellent survival after sibling or unrelated donor stem cell transplantation for chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2012, 129, 176-183.	1.5	67
112	Large-Scale Expansion of Dendritic Cell-Primed Polyclonal Human Cytotoxic T-Lymphocyte Lines Using Lymphoblastoid Cell Lines for Adoptive Immunotherapy. Journal of Immunotherapy, 2003, 26, 241-256.	1.2	59
113	Antiviral Tâ€cell therapy. Immunological Reviews, 2014, 258, 12-29.	2.8	58
114	Immunotherapy for Epsteinâ€Barr Virusâ€Associated Cancers in Children. Oncologist, 2003, 8, 83-98.	1.9	57
115	Use of cytokine polymorphisms and Epstein-Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clinical Transplantation, 2006, 20, 389-393.	0.8	56
116	Survivin-specific T cell receptor targets tumor but not T cells. Journal of Clinical Investigation, 2015, 125, 157-168.	3.9	56
117	Immunotherapy for Post-Transplant Lymphoproliferative Disease. British Journal of Haematology, 2002, 118, 728-740.	1.2	55
118	Replication-Competent Retroviruses in Gene-Modified T Cells Used in Clinical Trials: Is It Time to Revise the Testing Requirements?. Molecular Therapy, 2012, 20, 246-249.	3.7	54
119	Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients with Relapsed/Refractory T-Cell Malignancies. Blood, 2019, 134, 199-199.	0.6	53
120	Quantification of a low cellular immune response to aid in identification of pediatric liver transplant recipients at high-risk for EBV infection. Clinical Transplantation, 2006, 20, 689-694.	0.8	52
121	Hemolytic Uremic Syndrome after Bone Marrow Transplantation: Clinical Characteristics and Outcome in Children. Biology of Blood and Marrow Transplantation, 2005, 11, 912-920.	2.0	51
122	Allogeneic haematopoietic cell transplantation for myelofibrosis in 30 patients 60–78 years of age. British Journal of Haematology, 2011, 153, 76-82.	1.2	51
123	Epstein–Barr virus lymphoproliferative disease after hematopoietic stem cell transplant. Current Opinion in Hematology, 2014, 21, 476-481.	1.2	51
124	Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy, 2011, 13, 976-986.	0.3	50
125	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	0.6	49
126	Impending Challenges in the Hematopoietic Stem Cell Transplantation Physician Workforce. Biology of Blood and Marrow Transplantation, 2009, 15, 1493-1501.	2.0	48

#	Article	lF	CITATIONS
127	Identification of HLA-DP3-restricted peptides from EBNA1 recognized by CD4(+) T cells. Cancer Research, 2002, 62, 7195-9.	0.4	46
128	Comparable Outcome of Alternative Donor and Matched Sibling Donor Hematopoietic Stem Cell Transplant for Children with Acute Lymphoblastic Leukemia in First or Second Remission Using Alemtuzumab in a Myeloablative Conditioning Regimen. Biology of Blood and Marrow Transplantation, 2008, 14, 1245-1252.	2.0	45
129	Diagnosis and treatment of posttransplantation lymphoproliferative disease after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2002, 8, 1-8.	2.0	44
130	Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma. Leukemia and Lymphoma, 2010, 51, 870-880.	0.6	44
131	"Mini―bank of only 8 donors supplies CMV-directed T cells to diverse recipients. Blood Advances, 2019, 3, 2571-2580.	2.5	44
132	Autologous HER2 CMV bispecific CAR T cells for progressive glioblastoma: Results from a phase I clinical trial Journal of Clinical Oncology, 2015, 33, 3008-3008.	0.8	44
133	Adoptive T-Cell Therapy for EBV-Associated Post-Transplant Lymphoproliferative Disease. Acta Haematologica, 2003, 110, 139-148.	0.7	43
134	New ISSCR guidelines: clinical translation of stem cell research. Lancet, The, 2016, 387, 1979-1981.	6.3	42
135	Policy: Global standards for stem-cell research. Nature, 2016, 533, 311-313.	13.7	41
136	Lymphoproliferative disorders involving Epstein-Barr virus after hemopoietic stem cell transplantation. Current Opinion in Oncology, 1999, 11, 96.	1.1	40
137	The Costs and Cost-Effectiveness of Allogeneic Peripheral Blood Stem Cell Transplantation versus Bone Marrow Transplantation in Pediatric Patients with Acute Leukemia. Biology of Blood and Marrow Transplantation, 2010, 16, 1272-1281.	2.0	39
138	Production of good manufacturing practice-grade cytotoxic T lymphocytes specific for Epstein–Barr virus, cytomegalovirus and adenovirus to prevent or treat viral infections post-allogeneic hematopoietic stem cell transplant. Cytotherapy, 2012, 14, 7-11.	0.3	39
139	Interleukin 2 infusion induces haemopoietic growth factors and modifies marrow regeneration after chemotherapy or autologous marrow transplantation. British Journal of Haematology, 1991, 77, 237-244.	1.2	38
140	Treatment of Epstein-Barr Virus Lymphoproliferative Disease after Hematopoietic Stem-Cell Transplantation with Hydroxyurea and Cytotoxic T-Cell Lymphocytes. Transplantation, 2004, 78, 755-757.	0.5	38
141	Adoptive Tâ€ɛell transfer in cancer immunotherapy. Immunology and Cell Biology, 2006, 84, 281-289.	1.0	38
142	Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood, 2021, 137, 2585-2597.	0.6	38
143	Cytotoxic T lymphocytes as immuneâ€therapy in haematological practice. British Journal of Haematology, 2008, 143, 169-179.	1.2	35
144	T lymphocytes targeting native receptors. Immunological Reviews, 2014, 257, 39-55.	2.8	34

#	Article	IF	CITATIONS
145	Antigen-specific T cell therapies for cancer: Figure 1 Human Molecular Genetics, 2015, 24, R67-R73.	1.4	32
146	T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor–Expressing T Cells. Clinical Cancer Research, 2019, 25, 7340-7350.	3.2	32
147	Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma Journal of Clinical Oncology, 2017, 35, 10508-10508.	0.8	32
148	Malignant plasma cells are sensitive to LAK cell lysis: pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. British Journal of Haematology, 1990, 75, 499-505.	1.2	30
149	Assessment of the Efficacy of Purging by Using Gene Marked Autologous Marrow Transplantation for Children with AML in First Complete Remission. St. Jude Children's Research Hospital, Memphis, Tennessee. Human Gene Therapy, 1994, 5, 481-499.	1.4	30
150	Genetic Modification of T Cells. Biology of Blood and Marrow Transplantation, 2011, 17, S15-S20.	2.0	30
151	Definitions of histocompatibility typing terms: Harmonization of Histocompatibility Typing Terms Working Group. Human Immunology, 2011, 72, 1214-1216.	1.2	30
152	T-cell therapy for viral infections. Hematology American Society of Hematology Education Program, 2013, 2013, 342-347.	0.9	30
153	Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease. Haematologica, 2013, 98, 533-537.	1.7	30
154	Serial Activation of the Inducible Caspase 9 Safety Switch After Human Stem Cell Transplantation. Molecular Therapy, 2016, 24, 823-831.	3.7	30
155	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	0.8	30
156	Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. , 1999, 14, 154-156.		29
157	Transfusion-related acute lung injury (TRALI) following allogeneic stem cell transplant for acute myeloid leukemia. American Journal of Hematology, 2004, 75, 48-51.	2.0	29
158	Ex vivo gene transfer for improved adoptive immunotherapy of cancer. Human Molecular Genetics, 2011, 20, R93-R99.	1.4	29
159	Tâ€cell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	1.2	29
160	Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. , 2020, 8, e001229.		29
161	Haemopoietic stem cell transplantation for acute lymphoblastic leukaemia. Cancer Treatment Reviews, 2003, 29, 3-10.	3.4	28
162	Systemic Inflammatory Response Syndrome After Administration of Unmodified T Lymphocytes. Molecular Therapy, 2014, 22, 1134-1138.	3.7	28

#	Article	IF	CITATIONS
163	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	3.7	28
164	Control of virus-induced lymphoproliferation: Epstein-Barr virus-induced lymphoproliferation and host immunity. Trends in Molecular Medicine, 1997, 3, 24-30.	2.6	27
165	In vivoexpansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leukemia and Lymphoma, 2006, 47, 837-842.	0.6	27
166	Late-Onset Severe Chronic Active EBV in a Patient for FiveÂYears with Mutations in STXBP2 (MUNC18-2) and PRF1 (Perforin 1). Journal of Clinical Immunology, 2015, 35, 445-448.	2.0	27
167	Crosstalk between Medulloblastoma Cells and Endothelium Triggers a Strong Chemotactic Signal Recruiting T Lymphocytes to the Tumor Microenvironment. PLoS ONE, 2011, 6, e20267.	1.1	26
168	The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Science Translational Medicine, 2020, 12, .	5.8	25
169	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 223-223.	0.6	25
170	Adoptive Immunotherapy for Epstein-Barr Virus-Related Lymphoma. Leukemia and Lymphoma, 1996, 23, 213-220.	0.6	24
171	Administration of Neomycin Resistance Gene Marked EBV Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Hodgkin Disease. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. Human Gene Therapy, 1998, 9, 1237-1250.	1.4	24
172	Hematopoietic and immunomodulatory effects of lytic CD45 monoclonal antibodies in patients with hematologic malignancy. Biology of Blood and Marrow Transplantation, 2003, 9, 273-281.	2.0	24
173	Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Practice and Research in Clinical Haematology, 2008, 21, 405-420.	0.7	24
174	Outcomes after Second Hematopoietic Stem Cell Transplantations in Pediatric Patients with Relapsed Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, 1266-1272.	2.0	24
175	High Incidence of Autoimmune Disease after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 1643-1650.	2.0	24
176	A Yeast Artificial Chromosome (YAC) Contig Encompassing the Critical Region of the X-Linked Lymphoproliferative Disease (XLP) Locus. Genomics, 1997, 39, 55-65.	1.3	23
177	The Use of Cytotoxic T Cells for the Prevention and Treatment of Epstein-Barr Virus Induced Lymphoma in Transplant Recipients. Leukemia and Lymphoma, 2000, 39, 455-464.	0.6	23
178	A Single Institution Experience With Pediatric Nasopharyngeal Carcinoma: High Incidence of Toxicity Associated With Platinum-based Chemotherapy Plus IMRT. Journal of Pediatric Hematology/Oncology, 2007, 29, 500-505.	0.3	23
179	Adoptive Immunotherapy with Antigen-Specific T Cells Expressing a Native TCR. Cancer Immunology Research, 2019, 7, 528-533.	1.6	23
180	Spontaneous and interleukin 2 induced secretion of tumour necrosis factor and gamma interferon following autologous marrow transplantation or chemotherapy. British Journal of Haematology, 1989, 72, 122-126.	1.2	22

#	Article	IF	CITATIONS
181	Survival outcomes of allogeneic hematopoietic cell transplants with EBVâ€positive or EBVâ€negative postâ€transplant lymphoproliferative disorder, A CIBMTR study. Transplant Infectious Disease, 2019, 21, e13145.	0.7	22
182	Direct Comparison of In Vivo Fate of Second and Third-Generation CD19-Specific Chimeric Antigen Receptor (CAR)-T Cells in Patients with B-Cell Lymphoma: Reversal of Toxicity from Tonic Signaling. Blood, 2016, 128, 1851-1851.	0.6	22
183	Successful Treatment of Stem Cell Graft Failure in Pediatric Patients Using a Submyeloablative Regimen of Campath-1H and Fludarabine. Biology of Blood and Marrow Transplantation, 2008, 14, 1298-1304.	2.0	21
184	Outcomes after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 537-541.	2.0	21
185	Graft-versus-host reactions and bone-marrow transplantation. Current Opinion in Immunology, 1991, 3, 752-757.	2.4	20
186	Recent advances in Tâ€cell immunotherapy for haematological malignancies. British Journal of Haematology, 2017, 176, 688-704.	1.2	20
187	CD30-Chimeric Antigen Receptor (CAR) T Cells for Therapy of Hodgkin Lymphoma (HL). Blood, 2018, 132, 680-680.	0.6	20
188	Complementâ€Fixing CD45 Monoclonal Antibodies to Facilitate Stem Cell Transplantation in Mouse and Man. Annals of the New York Academy of Sciences, 2003, 996, 80-88.	1.8	19
189	Administration of Latent Membrane Protein 2–Specific Cytotoxic T Lymphocytes to Patients with Relapsed Epstein-Barr Virus–Positive Lymphoma. Clinical Lymphoma and Myeloma, 2006, 6, 342-347.	1.4	19
190	Adoptive T-Cell Therapy for Epstein-Barr Virus–Related Lymphomas. Journal of Clinical Oncology, 2021, 39, 514-524.	0.8	18
191	Incorporation of thiotepa in a reduced intensity conditioning regimen may improve engraftment after transplant for HLH. British Journal of Haematology, 2020, 188, e84-e87.	1.2	18
192	Chimeric T Cells for Therapy of CD30+ Hodgkin and Non-Hodgkin Lymphomas. Blood, 2015, 126, 185-185.	0.6	18
193	Immunotherapy to reconstitute immunity to DNA viruses. Seminars in Hematology, 2002, 39, 41-47.	1.8	17
194	Cellular therapy of Epstein–Barr-virus-associated post-transplant lymphoproliferative disease. Best Practice and Research in Clinical Haematology, 2004, 17, 401-413.	0.7	17
195	Gene-marked autologous hematopoietic stem cell transplantation of autoimmune disease. Journal of Clinical Immunology, 2000, 20, 1-9.	2.0	16
196	Multi-Virus-Specific T-Cell Therapy For Patients After Hematopoietic Stem Cell and Cord Blood Transplantation. Blood, 2013, 122, 140-140.	0.6	16
197	Comparison of two CD40-ligand/interleukin-2 vaccines in patients with chronic lymphocytic leukemia. Cytotherapy, 2011, 13, 1128-1139.	0.3	15
198	Plasma Markers of B-Cell Activation and Clonality in Pediatric Liver and Hematopoietic Stem Cell Transplant Recipients. Transplantation, 2013, 95, 519-526.	0.5	15

#	Article	IF	CITATIONS
199	Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biology of Blood and Marrow Transplantation, 2018, 24, 1424-1431.	2.0	15
200	The use of chimeric antigen receptor T cells in patients with non-Hodgkin lymphoma. Clinical Advances in Hematology and Oncology, 2018, 16, 375-386.	0.3	15
201	Measuring gene–transfer efficiency. Nature Medicine, 1996, 2, 1280-1281.	15.2	14
202	Preparing for Growth: Current Capacity and Challenges in Hematopoietic Stem Cell Transplantation Programs. Biology of Blood and Marrow Transplantation, 2010, 16, 595-597.	2.0	14
203	CD30-Chimeric Antigen Receptor (CAR) T Cells for Therapy of Hodgkin Lymphoma (HL). Biology of Blood and Marrow Transplantation, 2019, 25, S63.	2.0	14
204	Taking T-Cell Oncotherapy Off-the-Shelf. Trends in Immunology, 2021, 42, 261-272.	2.9	14
205	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	0.6	14
206	Immunotherapy for Lymphoma Using T Cells Targeting Multiple Tumor Associated Antigens. Blood, 2015, 126, 186-186.	0.6	13
207	Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplantÂin patients with ALL. Blood, 2022, 139, 2706-2711.	0.6	13
208	Computer-Assisted Quantitative Evaluation of Therapeutic Responses for Lymphoma Using Serial PET/CT Imaging. Academic Radiology, 2010, 17, 479-488.	1.3	12
209	CD5 CAR T-Cells for Treatment of Patients with Relapsed/Refractory CD5 Expressing T-Cell Lymphoma Demonstrates Safety and Anti-Tumor Activity. Biology of Blood and Marrow Transplantation, 2020, 26, S237.	2.0	12
210	Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Annals of Hematology, 2021, 100, 2529-2539.	0.8	12
211	Blood and Marrow Transplant Clinical Trials Network State of the Science Symposium 2021: Looking Forward as the Network Celebrates its 20th Year. Transplantation and Cellular Therapy, 2021, 27, 885-907.	0.6	12
212	ALLOGENEIC RED BLOOD CELLS FAIL TO INDUCE HAEMAGGLUTINATING ANTIBODIES OR CELLULAR ALLOIMMUNITY IN RATS AND ARE IMMUNOSUPPRESSIVE. Transplantation, 1979, 28, 144-148.	0.5	11
213	Use of Marker Genes to Investigate the Mechanism of Relapse and the Effect of Bone Marrow Purging in Autologous Transplantation for Stage D Neuroblastoma. St. Jude Children's Research Hospital. Human Gene Therapy, 1993, 4, 809-820.	1.4	11
214	Gene-Marking studies of hematopoietic cells. International Journal of Hematology, 2001, 73, 14-22.	0.7	11
215	Clonal Dynamics In Vivo of Virus Integration Sites of T Cells Expressing a Safety Switch. Molecular Therapy, 2016, 24, 736-745.	3.7	11
216	Health disparities experienced by Black and Hispanic Americans with multiple myeloma in the United States: a population-based study. Leukemia and Lymphoma, 2021, 62, 3256-3263.	0.6	11

#	Article	IF	CITATIONS
217	High risk of relapsed disease in patients with NK/T-cell chronic active Epstein-Barr virus disease outside of Asia. Blood Advances, 2022, 6, 452-459.	2.5	11
218	Enhancement of monoclonal antibody dependent cell mediated cytotoxicity by IL2 and GM-CSF. British Journal of Haematology, 1989, 73, 468-474.	1.2	10
219	Use of Double Marking with Retroviral Vectors to Determine Rate of Reconstitution of Untreated and Cytokine Expanded CD34+Selected Marrow Cells in Patients Undergoing Autologous Bone Marrow Transplantation. St. Jude Children's Research Hospital, Memphis, Tennessee. Human Gene Therapy, 1996, 7. 655-667.	1.4	10
220	Increased Transduction Efficiency of Primary Hematopoietic Cells by Physical Colocalization of Retrovirus and Target Cells. Stem Cells and Development, 1998, 7, 217-224.	1.0	10
221	HAEMOPOIETIC STEM CELL TRANSPLANTATION FROM UNRELATED DONORS British Journal of Haematology, 1999, 105, 2-6.	1.2	10
222	Viral lymphomagenesis. Current Opinion in Hematology, 2006, 13, 254-259.	1.2	10
223	Adoptive cellular therapy with T cells specific for EBV-derived tumor antigens. Update on Cancer Therapeutics, 2008, 3, 33-41.	0.9	10
224	Forecasting Cytokine Storms with New Predictive Biomarkers. Cancer Discovery, 2016, 6, 579-580.	7.7	10
225	Preferentially Expressed Antigen of Melanoma (PRAME)-Specific Cytotoxic T-Lymphocytes (CTLs) and Transgenic T Cells To Target Chronic Myelogenous Leukemia (CML) Blood, 2007, 110, 2761-2761.	0.6	10
226	Graft versus leukaemia effects after marrow transplantation in man. Best Practice and Research: Clinical Haematology, 1991, 4, 727-749.	1.1	9
227	Adoptive T-Cell Therapy for Epstein-Barr Virus-Positive Hodgkin's Disease. Acta Haematologica, 2003, 110, 149-153.	0.7	9
228	Children with acute leukemia: A comparison of outcomes from allogeneic blood stem cell and bone marrow transplantation. Pediatric Blood and Cancer, 2011, 56, 143-151.	0.8	9
229	Allogeneic hematopoietic stem cell transplant for relapsed and refractory non-Hodgkin lymphoma in pediatric patients. Blood Advances, 2019, 3, 2689-2695.	2.5	9
230	A phase I trial targeting advanced or metastatic pancreatic cancer using a combination of standard chemotherapy and adoptively transferred nonengineered, multiantigen specific T cells in the first-line setting (TACTOPS) Journal of Clinical Oncology, 2020, 38, 4622-4622.	0.8	9
231	Early Signals of Anti-Tumor Efficacy and Safety with Autologous CD5.CAR T-Cells in Patients with Refractory/Relapsed T-Cell Lymphoma. Blood, 2021, 138, 654-654.	0.6	9
232	Immunotherapy: opportunities, risks and future perspectives. Cytotherapy, 2014, 16, S120-S129.	0.3	8
233	Checkpoint inhibition and cellular immunotherapy in lymphoma. Hematology American Society of Hematology Education Program, 2016, 2016, 390-396.	0.9	8
234	CARâ€T cell therapy for nonâ€Hodgkin lymphomas: A new treatment paradigm. Advances in Cell and Gene Therapy, 2019, 2, e54.	0.6	8

#	Article	IF	CITATIONS
235	Equal-opportunity treatment of EBV-PTLD. Blood, 2012, 119, 2436-2438.	0.6	7
236	Genetic modification of T cells with a novel bispecific chimeric antigen receptor to enhance the control of high-grade glioma (HGG) Journal of Clinical Oncology, 2014, 32, 10027-10027.	0.8	7
237	Immune-Based Therapies Targeting Mage-A4 for Relapsed/Refractory Hodgkin's Lymphoma After Stem Cell Transplant Blood, 2009, 114, 4089-4089.	0.6	7
238	Sensitizing Burkitt lymphoma to EBV-CTLs. Blood, 2020, 135, 1822-1823.	0.6	7
239	Safety and Efficacy Profile of Autologous CD30.CAR-T-Cell Therapy in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (CHARIOT Trial). Blood, 2021, 138, 3847-3847.	0.6	7
240	A backpack revs up T-cell activity. Nature Biotechnology, 2018, 36, 702-703.	9.4	6
241	Generation of multivirus-specific T cells by a single stimulation of peripheral blood mononuclear cells with a peptide mixture using serum-free medium. Cytotherapy, 2018, 20, 1182-1190.	0.3	6
242	Administering Leukemia-Directed Donor Lymphocytes to Patients with AML or MDS to Prevent or Treat Post-Allogeneic HSCT Relapse. Biology of Blood and Marrow Transplantation, 2019, 25, S10-S11.	2.0	6
243	Genetic errors of immunity distinguish pediatric nonmalignant lymphoproliferative disorders. Journal of Allergy and Clinical Immunology, 2022, 149, 758-766.	1.5	6
244	Matched related hematopoietic cell transplant for sickle cell disease with alemtuzumab: the Texas Children's Hospital experience. Bone Marrow Transplantation, 2021, 56, 2797-2803.	1.3	6
245	Clinical Responses In Patients Infused With T Lymphocytes Redirected To Target κ-Light Immunoglobulin Chain. Blood, 2013, 122, 506-506.	0.6	6
246	Safety and Efficacy of Off-the-Shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells in Patients with CD30-Positive Lymphoma. Blood, 2021, 138, 1763-1763.	0.6	6
247	A Bank of CD30.CAR-Modified, Epstein-Barr Virus-Specific T Cells That Lacks Host Reactivity and Resists Graft Rejection for Patients with CD30-Positive Lymphoma. Blood, 2020, 136, 16-16.	0.6	6
248	Multi-antigen-targeted T-cell therapy to treat patients with relapsed/refractory breast cancer. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592211071.	1.4	6
249	Delayed Induction of Proto-Oncogene Expression in B-CLL Cells by Tumor Necrosis Factor. Leukemia and Lymphoma, 1990, 3, 37-43.	0.6	5
250	Gene therapy for paediatric leukaemia. Expert Opinion on Biological Therapy, 2001, 1, 663-674.	1.4	5
251	Aggressive peripheral CD70â€positive tâ€cell lymphoma associated with severe chronic active EBV infection. Pediatric Blood and Cancer, 2012, 59, 758-761.	0.8	5
252	Combining Drugs and Biologics to Treat Nasopharyngeal Cancer. Molecular Therapy, 2014, 22, 8-9.	3.7	5

#	Article	IF	CITATIONS
253	Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Molecular Therapy, 2018, 26, 1-2.	3.7	5
254	Administration of Tumor-Specific Cytotoxic T Lymphocytes Engineered to Resist TGF-ß to Patients with EBV-Associated Lymphomas. Blood, 2010, 116, 560-560.	0.6	5
255	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	0.6	5
256	Upper airway obstruction and pulmonary abnormalities due to lymphoproliferative disease following bone marrow transplantation in children. Pediatric Radiology, 1998, 28, 492-496.	1.1	4
257	Genetic engineering of T-cell receptors: TCR takes to titin. Blood, 2013, 122, 853-854.	0.6	4
258	New Approaches in Alternative Donor Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, S91-S96.	2.0	4
259	Fall of the mutants: T cells targeting BCR-ABL. Blood, 2017, 129, 539-540.	0.6	4
260	Exhausting alloreactivity of donor-derived CAR T cells. Nature Medicine, 2017, 23, 147-148.	15.2	4
261	Harmonizing Immune Effector Toxicity Reporting. Biology of Blood and Marrow Transplantation, 2019, 25, e121-e122.	2.0	4
262	Virus-Specific T Cells for the Treatment of Malignancies—Then, Now, and the Future. Current Stem Cell Reports, 2020, 6, 17-29.	0.7	4
263	Stereotactic body radiation therapy and in situ oncolytic virus therapy followed by immunotherapy in metastatic non-small cell lung cancer Journal of Clinical Oncology, 2021, 39, 9115-9115.	0.8	4
264	Assessment and reporting of quality-of-life measures in pivotal clinical trials of hematological malignancies. Blood Advances, 2021, 5, 4630-4633.	2.5	4
265	Phase I Study to Improve Virus-Specific Immune Reconstitution After Cord Blood Transplantation Using Cord Blood-Derived Virus-Specific Cytotoxic T Lymphocytes. Blood, 2011, 118, 155-155.	0.6	4
266	Allogeneic Stem Cell Transplantation in a Pediatric Patient with Whim Syndrome. Blood, 2015, 126, 5528-5528.	0.6	4
267	T cell receptor repertoire of CD4 + and CD8 + T cell subsets in the allogeneic bone marrow transplant recipient. Cancer Immunology, Immunotherapy, 1995, 41, 104-110.	2.0	4
268	A method for preparing leucocyte depleted erythrocytes from rat blood. Journal of Immunological Methods, 1978, 22, 389-391.	0.6	3
269	Cene transfer for the therapy of hematologic malignancy. Current Opinion in Hematology, 1995, 2, 417-422.	1.2	3
270	The Clone Ranger?. Molecular Therapy, 2008, 16, 1520-1521.	3.7	3

#	Article	IF	CITATIONS
271	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2013, 19, S111.	2.0	3
272	Adoptive T-Cell Therapy to Prevent and Treat Human Metapneumovirus (hMPV) Infections Post Hematopoietic Stem Cell Transplant (HSCT). Biology of Blood and Marrow Transplantation, 2015, 21, S170.	2.0	3
273	Immunotherapy for Lymphoma Using T Cells Targeting Multiple Tumor-Associated Antigens. Biology of Blood and Marrow Transplantation, 2016, 22, S44-S45.	2.0	3
274	Intravesicular Cidofovir for BK Hemorrhagic Cystitis in Pediatric Patients after Hematopoietic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2016, 22, S163-S164.	2.0	3
275	Equal opportunity CAR T cells. Blood, 2017, 129, 3275-3277.	0.6	3
276	Epigenetic Inhibition Puts Target Antigen in the Crosshairs of CAR T Cells. Molecular Therapy, 2019, 27, 900-901.	3.7	3
277	Excellent Outcomes for Pediatric Non-Malignant Diseases Using Umbilical Cord Blood Transplantation (UCBT) Conditioned without Serotherapy in the Absence of a Matched Related Donor. Biology of Blood and Marrow Transplantation, 2019, 25, S13.	2.0	3
278	CRISPR-Edited Immune Effectors: The End of the Beginning. Molecular Therapy, 2020, 28, 995-996.	3.7	3
279	Priorities for Improving Outcomes for Nonmalignant Blood Diseases: A Report from the Blood and Marrow Transplant Clinical Trials Network. Biology of Blood and Marrow Transplantation, 2020, 26, e94-e100.	2.0	3
280	Multiple Integration Events into Several Putative Oncogenes Was Required To Cause Leukemogenesis in Two Primate Recipients of RCR Contaminated Stem-Cells Blood, 2004, 104, 2102-2102.	0.6	3
281	T Cell Immunotherapy for Adenoviral Infections of Stem Cell Transplant Recipients Blood, 2006, 108, 591-591.	0.6	3
282	Beyond CD19 CAR-T cells in lymphoma. Current Opinion in Immunology, 2022, 74, 46-52.	2.4	3
283	7 Cytokine gene transfer in the therapy of malignancy. Best Practice and Research: Clinical Haematology, 1994, 7, 135-151.	1.1	2
284	Immunotherapy for malignancies and viral infections. Current Opinion in Organ Transplantation, 2000, 5, 197-202.	0.8	2
285	A less sour sweet; blocking galectin. Blood, 2011, 117, 4165-4166.	0.6	2
286	Getting Personal with Melanoma. Clinical Cancer Research, 2011, 17, 4189-4191.	3.2	2
287	Pharmacotherapy versus T lymphocytes for CMV. Blood, 2013, 121, 3544-3545.	0.6	2
288	Demographic and Clinical Donor Characteristics as Predictors of Total Nucleated Cell Concentrations in Harvested Marrow Products. Transplantation and Cellular Therapy, 2021, 27, 785.e1-785.e6.	0.6	2

#	Article	IF	CITATIONS
289	Safety and Efficacy of Multiantigen-Targeted T Cells for Multiple Myeloma. Blood, 2018, 132, 1014-1014.	0.6	2
290	Three-Module Signaling Endo-Domain Artifical T-Cell Receptor Which Transmits CD28, OX40 and CD3-ζ Signals Enhances IL-2 Release and Proliferative Response in Transduced Primary T-Cells Blood, 2004, 104, 1747-1747.	0.6	2
291	Evaluation of Aprepitant for Treatment of Acute and Delayed Chemotherapy-Induced Nausea and Vomiting in Patients Undergoing Autologous Stem Cell Transplantation Blood, 2004, 104, 5041-5041.	0.6	2
292	Gene Transfer of IL-7R alpha (IL-7Rα) on Antigen-Specific Cytotoxic T Cells (CTLs) Restores Their Ability To Respond to IL-7 Cytokine Blood, 2007, 110, 2756-2756.	0.6	2
293	Improving Immune Reconstitution After Cord Blood Transplantation Using Ex Vivo Expanded Virus-Specific T Cells: A Phase I Clinical Study. Blood, 2012, 120, 224-224.	0.6	2
294	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	0.6	2
295	Safety and Clinical Efficacy Of Rapidly-Generated Virus-Specific T Cells With Activity Against Adv, EBV, CMV, HHV6 and BK Virus Administered After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2013, 122, 148-148.	0.6	2
296	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2016, 128, 501-501.	0.6	2
297	LMP2-Cytotoxic T Lymphocyte Therapy for Relapsed EBV Positive Lymphoma Blood, 2004, 104, 3276-3276.	0.6	2
298	Using Allogeneic, Off-the-Shelf, Sars-Cov-2-Specific T Cells to Treat High Risk Patients with COVID-19. Blood, 2020, 136, 5-5.	0.6	2
299	Rituximab as adjunctive therapy to BEAM conditioning for autologous stem cell transplantation in Hodgkin lymphoma. Bone Marrow Transplantation, 2022, , .	1.3	2
300	Genetically engineered T-cells for adoptive immunotherapy. Current Opinion in Molecular Therapeutics, 2002, 4, 467-75.	2.8	2
301	Suicide is painless. Blood, 2006, 107, 2211-2212.	0.6	1
302	Guidance for Developing Phase II Cell Therapy Trial Proposals for Consideration by the Blood and Marrow Transplant Clinical Trials Network. Biology of Blood and Marrow Transplantation, 2011, 17, 192-196.	2.0	1
303	Administration of LMP-Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Lymphoma Post Allogeneic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2015, 21, S148.	2.0	1
304	Respiratory Viral Infections after Hematopoietic Stem Cell Transplants : The Texas Children's Hospital Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S256-S257.	2.0	1
305	Matched Unrelated Allogeneic Stem Cell Transplantation for Congenital Amegakaryocytic Thrombocytopenia: Texas Children's Hospital Experience. Biology of Blood and Marrow Transplantation, 2016, 22, S237.	2.0	1
306	Chimeric T-Cells for Therapy of CD30+ Hodgkin and Non-Hodgkin Lymphomas (HL & NHL). Biology of Blood and Marrow Transplantation, 2016, 22, S145-S146.	2.0	1

#	Article	IF	CITATIONS
307	Adoptive Transfer of Multi-Tumor Antigen Specific T Cells as Treatment for Patients with Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2017, 23, S50.	2.0	1
308	Allogeneic Hematopoietic Cell Transplants in Patients with Myelofibrosis Age 60 and Older. Blood, 2008, 112, 2798-2798.	0.6	1
309	Monoculture-Derived T Lymphocytes Providing Multiple Virus Specificity and Anti-Leukemia Activity for Recipients of Hematopietic Stem Cells or Umbilical Cord Blood Transplants. Blood, 2008, 112, 3909-3909.	0.6	1
310	Adoptive Immunotherapy with Memory T Cells Blood, 2008, 112, sci-25-sci-25.	0.6	1
311	IL15 Enhances Proliferation and Effector Function of Antigen-Specific Cytotoxic T Lymphocytes (CTLs) and Mitigates the Suppressive Action of Regulatory T Cells (Tregs) Blood, 2009, 114, 4088-4088.	0.6	1
312	Allogeneic Virus-Specific T Cells with HLA Alloreactivity Do Not Produce Graft-Versus-Host Disease In Human Subjects. Blood, 2010, 116, 1252-1252.	0.6	1
313	Infusion of CD19-Directed and Multivirus Specific Cytotoxic T Lymphocytes After Allogeneic Hematopoietic Stem Cell Transplantation for B Cell Malignancies,. Blood, 2011, 118, 4083-4083.	0.6	1
314	Optimizing the Manufacture of CAR-T Cells for Clinical Applications. Blood, 2012, 120, 348-348.	0.6	1
315	Flanking-Sequence Exponential Anchored (FLEA) PCR - a Sensitive and Highly Specific Method for Detecting Retroviral Integrant-Host-Junction Sequences Blood, 2004, 104, 2112-2112.	0.6	1
316	Broad Spectrum Tumor Antigen-Specific Cytotoxic T Lymphocytes (CTL) for Therapy of Hematological Malignancy Blood, 2009, 114, 4083-4083.	0.6	1
317	CASPALLO: Phase I Clinical Trial of Allodepleted T Cells Transduced with Inducible Caspase 9 Suicide Gene After Haploidentical Stem Cell Transplantation. Blood, 2010, 116, 559-559.	0.6	1
318	Complete Tumor Responses in Lymphoma Patients Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein Barr Virus (EBV) - Latent Membrane Proteins. Blood, 2011, 118, 956-956.	0.6	1
319	Targeting Lymphomas Using Non-Engineered, Multi-Antigen Specific T Cells. Blood, 2018, 132, 1685-1685.	0.6	1
320	Treatment of Severe, Drug-Refractory Viral Infections with Allogeneic, Off-the-Shelf Multi-Virus Specific T Cells in Patients Following HSCT: Results from a Phase 2 Study. Blood, 2020, 136, 2-3.	0.6	1
321	Graft-versus-yogurt. Blood, 2004, 103, 4000-4001.	0.6	Ο
322	Dimerize and die. Blood, 2004, 103, 1177-1178.	0.6	0
323	To T-cell deplete or not. Blood, 2005, 106, 2932-2932.	0.6	0
		_	

Adoptive cellular immunotherapy. , 2006, , 648-660.

#	Article	IF	CITATIONS
325	766. Immunotherapy for Her2-Positive Medulloblastoma: Regression of Experimental Tumors by Transfer of Her2-Redirected T Cells In Vivo. Molecular Therapy, 2006, 13, S296.	3.7	Ο
326	Adoptive Immunotherapy. , 0, , 920-935.		0
327	TCR expression; quantitative easing by CD3. Blood, 2011, 118, 3452-3453.	0.6	0
328	Bi-Specific T Cell Therapy for Pancreatic Cancer. Biology of Blood and Marrow Transplantation, 2013, 19, S347-S348.	2.0	0
329	Outcomes After Second Allogeneic Transplants in Pediatric Patients With Relapsed Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2013, 19, S253.	2.0	Ο
330	Reply to S. Yuan et al. Journal of Clinical Oncology, 2014, 32, 2820-2821.	0.8	0
331	Outcome after Stem Cell Transplant in Patients with Dyskeratosis Congenita. Biology of Blood and Marrow Transplantation, 2014, 20, S178-S179.	2.0	Ο
332	Refined/Accelerated T Cell Therapies for the Treatment of EBV+ Lymphomas. Biology of Blood and Marrow Transplantation, 2014, 20, S134.	2.0	0
333	Extending the Option of CMV-Specific T Cells from the CMV-Seronegative Donor. Biology of Blood and Marrow Transplantation, 2014, 20, S131.	2.0	Ο
334	Umbilical Cord Blood Transplantation Conditioned without Serotherapy Is an Excellent Curative Alternative for Pediatric Non-Malignant Diseases. Biology of Blood and Marrow Transplantation, 2015, 21, S103-S104.	2.0	0
335	Outcomes after Allogeneic Stem Cell Transplantation for Patients with Non-Hodgkin Lymphoma: Texas Children's Hospital Experience 1999-2013. Biology of Blood and Marrow Transplantation, 2015, 21, S211-S212.	2.0	Ο
336	518. Artificial Mouse Model: An Animal-Free System for Assessment of CAR-T Cell Function. Molecular Therapy, 2015, 23, S207-S208.	3.7	0
337	722. Overcoming EBV Tumor Specific T-Cell Anergy in Rapidly-Generated EBVST-Cells for Adoptive Transfer Therapy. Molecular Therapy, 2015, 23, S288.	3.7	Ο
338	Optimized manufacturing process for the generation of clinical grade CAR T cells. Cytotherapy, 2015, 17, S82.	0.3	0
339	Safety of multiple doses of car T cells. Cytotherapy, 2015, 17, S12-S13.	0.3	Ο
340	451. Robust Manufacture of CAR-T Cells. Molecular Therapy, 2016, 24, S179.	3.7	0
341	Outcomes after Matched Unrelated Donor Stem Cell Transplantation in Chronic Granulomatous Disease – an Update. Biology of Blood and Marrow Transplantation, 2016, 22, S378.	2.0	0
342	Go-Rex: A Novel in Vitro System for the Assessment of CAR T Cell Function. Biology of Blood and Marrow Transplantation, 2016, 22, S425.	2.0	0

#	Article	IF	CITATIONS
343	A PHASE 1 Perspective: Multivirus-Specific T CELLS from BOTH Cord Blood and BONE Marrow Transplant Donors. Biology of Blood and Marrow Transplantation, 2016, 22, S140-S141.	2.0	0
344	IVIG Prophylaxis in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplant: A Retrospective Analysis of Monthly Intravenous Immunoglobulin Infusion vs. IgG Level Based Dosing. Biology of Blood and Marrow Transplantation, 2016, 22, S244.	2.0	0
345	An Optimized Process of Generating CAR-T Cells for Clinical Applications. Biology of Blood and Marrow Transplantation, 2016, 22, S386.	2.0	0
346	The Use of Donor Lymphocyte Infusions As Prophylaxis and Treatment for Relapse in Children Post Hematopoietic Cell Transplant for Malignant Disease: A Single Institution Experience. Biology of Blood and Marrow Transplantation, 2017, 23, S372-S373.	2.0	0
347	Administration of Banked, 3rd Party Multivirus-Specific T Cells to Treat Drug-Refractory EBV, CMV, AdV, HHV6, and BKV Infections in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2017, 23, S58-S59.	2.0	0
348	The Impact of Donor Baseline Characteristics on Total Nucleated Cell Count in Marrow Products of Healthy Bone Marrow Donors. Biology of Blood and Marrow Transplantation, 2019, 25, S201.	2.0	0
349	Safety and Efficacy of Multiantigen-Targeted T Cells for Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2019, 25, S411-S412.	2.0	Ο
350	Rasburicase Improves Renal Function and Uric Acid Nephropathy in Patients Developing Acute Renal Failure after Conditioning for Hematopoetic Stem Cell Transplant (HSCT) Blood, 2004, 104, 1142-1142.	0.6	0
351	Retrovirus-Transduced T Cell Blasts Have Not Only Antigen-Presenting Capabilities but Also Suppressor Regulatory T Cell-Inducing Capability Blood, 2004, 104, 3855-3855.	0.6	0
352	High Incidence but Low Morbitiy of Early Cytomegalovirus (CMV) Infections Following Reduced Intensity Conditioning (RIC) Allogeneic Stem Cell Transplantation with Alemtuzumab and Ganciclovir Prophylaxis Blood, 2004, 104, 5098-5098.	0.6	0
353	Inducible Caspase 9 as a Safety Switch in Genetically Modified Cytotoxic T Cells Blood, 2004, 104, 1743-1743.	0.6	0
354	Outcome of Alternative Donor Transplantation for Severe Aplastic Anemia Can Be Comparable to Outcome with Matched Related Donors Blood, 2005, 106, 2052-2052.	0.6	0
355	Transplantation from Matched Unrelated Donors (MUD) for Thalassemia and Other Congenital Red Cell Disorders Blood, 2005, 106, 2746-2746.	0.6	0
356	Genetically Modified Her2-Specific T Cells Recognize Low and High Her2 Expressing Breast Cancer Cells Blood, 2005, 106, 5540-5540.	0.6	0
357	The Clinical Use of Donor-Derived Virus-Specific Cytotoxic T Lymphocytes Reactive Against Cytomegalovirus (CMV), Adenovirus and Epstein Barr Virus (EBV) Blood, 2005, 106, 81-81.	0.6	0
358	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	0.6	0
359	Transgenic Expression of IL15 Selectively Expands Antigen Specific Cytotoxic T Cells (CTLs) Enhancing Their Anti-Tumor Effect In Vivo Blood, 2006, 108, 1721-1721.	0.6	0
360	Generation of Epstein Barr Virus Specific Cytotoxic T Lymphocytes (EBVCTLs) Resistant to the Immunosuppressive Drug Tacrolimus (FK506). Blood, 2008, 112, 3536-3536.	0.6	0

#	Article	IF	CITATIONS
361	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	0.6	0
362	Multivirus-Specific T Cell Immunotherapy to Prevent or Treat Infections of Stem Cell Transplant Recipients Blood, 2008, 112, 2207-2207.	0.6	0
363	The "Side-Population―of Human Lymphoma Cells Have Increased Chemo-Resistance, Stem-Cell Like Properties and Are Potential Targets for Immunotherapy. Blood, 2008, 112, 2620-2620.	0.6	Ο
364	Rapid Generation of Antigen-Specific T Cells for Pre-Clinical and Clinical Applications Using a Novel Mini Cell Bioreactor. Blood, 2008, 112, 208-208.	0.6	0
365	Vaccination Strategies for Patients with B-CLL Blood, 2008, 112, 2106-2106.	0.6	Ο
366	Exploiting Cytokine Secretion to Rapidly Produce Multivirus-Specific T Cells for Adoptive Immunotherapy. Blood, 2008, 112, 4594-4594.	0.6	0
367	Cytotoxic T Lymphocytes (CTL) Specific for Adenovirus and CMV Can Be Generated from Umbilical Cord Blood for Adoptive Immunotherapy. Blood, 2008, 112, 3505-3505.	0.6	0
368	Safely Improving the in Vivo Survival of Tumor Specific Cytotoxic T Lymphocytes by Co-Transfer of IL7 Receptor Alpha Chain and icaspase9. Blood, 2008, 112, 3534-3534.	0.6	0
369	Polyclonal PRAME-Specific Cytotoxic T Lymphocytes Generated Using Protein-Spanning Pools of Overlapping Pentadecapeptides Target Chronic Myeloid Leukemia. Blood, 2008, 112, 3899-3899.	0.6	0
370	Engineering CD19-Redirected T Lymphocytes to Enhance Their Safety and Efficacy. Blood, 2008, 112, 824-824.	0.6	0
371	Cytotoxic T Lymphocytes (CTL) Specific for CMV, Adenovirus, and EBV Can Be Generated From Naive T Cells for Adoptive Immunotherapy Blood, 2009, 114, 504-504.	0.6	0
372	An Inducible Caspase 9 Suicide Gene to Improve the Safety of Mesenchymal Stromal Cell Therapies Blood, 2009, 114, 1444-1444.	0.6	0
373	Adverse Events Following Infusion of T Cells for Adoptive Immunotherapy: A 10 Year Experience Blood, 2009, 114, 3212-3212.	0.6	0
374	Expansion of Lymphocytes for Cell-Based Therapeutics. Blood, 2010, 116, SCI-48-SCI-48.	0.6	0
375	The Effects of Co-Stimulatory Endodomains on the Fate of T Cells Expressing a Tumor Directed Chimeric Antigen Receptor (CAR) In Human Subjects with B Cell Malignancies. Blood, 2010, 116, 3949-3949.	0.6	0
376	Towards Phase 2/3 Trials for Epstein - Barr Virus (EBV)-Associated Malignancies,. Blood, 2011, 118, 4043-4043.	0.6	0
377	Human Papillomavirus Type 16 (HPV16) E6/E7-Specific Cytotoxic T Lymphocytes (CTLs) for Immunotherapy of HPV-Associated Malignancies. Blood, 2011, 118, 1913-1913.	0.6	0
378	Genetic Modification of Multi Leukemia Antigen-Specific Cytotoxic T Lymphocytes (CTL) to Enhance In Vivo Safety and Persistency. Blood, 2011, 118, 644-644.	0.6	0

#	Article	IF	CITATIONS
379	Nail̈^ve T Cell-Derived CTL Recognize Atypical Epitopes of CMVpp65 with Higher Avidity Than CMV-Seropositive Donor-Derived CTL – a Basis for Treatment of Post-Transplant Viral Infection by Adoptive Transfer of T Cells From Virus-nail̈∿ve Donors. Blood, 2011, 118, 3002-3002.	0.6	0
380	Human papillomavirus type 16 (HPV16) E6/E7-specific cytotoxicÂT lymphocytes (CTL) for immunotherapy of HPV-associated cancer (Ca) Journal of Clinical Oncology, 2012, 30, 2558-2558.	0.8	0
381	Whole genome sequencing of sporadic Burkitt lymphoma in HIV-infected and uninfected patients Journal of Clinical Oncology, 2013, 31, 8577-8577.	0.8	0
382	A "non-fratricidal―αβ- T Cell Receptor That Targets Survivin Expressed By Hematological Malignancies. Blood, 2013, 122, 141-141.	0.6	0
383	Graft Versus Leukemia Response without Graft Versus Host Disease Elicited By Adoptively Transferred Multivirus-Specific T-Cells. Blood, 2014, 124, 2439-2439.	0.6	0
384	T Cells Expressing CD19-Specific Chimeric Antigen Receptors Are Inhibited By Indoleamine 2,3-Dioxygenase in Tumors. Blood, 2014, 124, 2434-2434.	0.6	0
385	Matched Unrelated Allogeneic Stem Cell Transplantation for Patients with Congenital Amegakaryocytic Thrombocytopenia: Texas Children`s Hospital Experience. Blood, 2015, 126, 5529-5529.	0.6	0
386	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2015, 126, 622-622.	0.6	0
387	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	0.6	0
388	Rapidly-Generated EBV-Specific T Cells (EBVST-cells) to Treat Type 2 Latency Lymphoma. Blood, 2016, 128, 2990-2990.	0.6	0
389	Adoptive T-Cell Therapy for Acute Lymphoblastic Leukemia Targeting Multiple Tumor Associated Antigens. Blood, 2018, 132, 2693-2693.	0.6	0
390	Incorporation of Thiotepa in a Reduced Intensity Conditioning Regimen Leads to Improved Engraftment after Stem Cell Transplant for Patients with Hemophagocytic Lymphohistiocytosis. Blood, 2019, 134, 3273-3273.	0.6	0
391	Outcomes of myeloablative, T cell deplete unrelated donor hematopoietic stem cell transplantation at a single center Journal of Clinical Oncology, 2020, 38, e19525-e19525.	0.8	0
392	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Blood, 2021, 138, 471-471.	0.6	0
393	Assessment and reporting of quality-of-life measures in pivotal clinical trials of hematological malignancies Journal of Clinical Oncology, 2020, 38, 158-158.	0.8	0
394	Long Term Follow up for the Development of Subsequent Malignancies in Patients Treated with Genetically Modified Immune Effectors. Transplantation and Cellular Therapy, 2022, 28, S200-S201.	0.6	0