List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980906/publications.pdf Version: 2024-02-01

IICHA D'ANDLEV

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Crystallins in the eye: Function and pathology. Progress in Retinal and Eye Research, 2007, 26, 78-98.	7.3	375
3	Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science, 2015, 350, 674-677.	6.0	195
4	Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. European Journal of Human Genetics, 2003, 11, 784-793.	1.4	167
5	Cloning, Expression, and Chaperone-like Activity of Human αA-Crystallin. Journal of Biological Chemistry, 1996, 271, 31973-31980.	1.6	158
6	Differential Protective Activity of αA- and αB-crystallin in Lens Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 36823-36831.	1.6	145
7	The Molecular Chaperone αA-Crystallin Enhances Lens Epithelial Cell Growth and Resistance to UVA Stress. Journal of Biological Chemistry, 1998, 273, 31252-31261.	1.6	109
8	Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells. Toxicology and Applied Pharmacology, 2008, 228, 49-58.	1.3	100
9	A comprehensive analysis of the expression of crystallins in mouse retina. Molecular Vision, 2003, 9, 410-9.	1.1	95
10	Effects of α-Crystallin on Lens Cell Function and Cataract Pathology. Current Molecular Medicine, 2009, 9, 887-892.	0.6	85
11	CHANGES IN TERTIARY STRUCTURE OF CALF‣ENS αâ€CRYSTALLIN BY NEAR‣IV IRRADIATION: ROLE OF HYD PEROXIDE. Photochemistry and Photobiology, 1984, 40, 343-349.	RQGEN	79
12	PHOTODAMAGE TO THE EYE. Photochemistry and Photobiology, 1987, 46, 1057-1066.	1.3	76
13	The R116C Mutation in αA-crystallin Diminishes Its Protective Ability against Stress-induced Lens Epithelial Cell Apoptosis. Journal of Biological Chemistry, 2002, 277, 10178-10186.	1.6	70
14	The lens epithelium: Focus on the expression and function of the α-crystallin chaperones. International Journal of Biochemistry and Cell Biology, 2008, 40, 317-323.	1.2	68
15	A Knock-In Mouse Model for the R120G Mutation of αB-Crystallin Recapitulates Human Hereditary Myopathy and Cataracts. PLoS ONE, 2011, 6, e17671.	1.1	68
16	Alphaâ€crystallin expression affects microtubule assembly and prevents their aggregation. FASEB Journal, 2006, 20, 846-857.	0.2	67
17	Lens epithelial cells derived from αBâ€crystallin knockout mice demonstrate hyperproliferation and genomic instability. FASEB Journal, 2001, 15, 221-229.	0.2	66
18	Mimicking phosphorylation of the small heat-shock protein αB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. FEBS Journal, 2004, 271, 4195-4203.	0.2	63

#	Article	IF	CITATIONS
19	Spectroscopic investigations of bovine lens crystallins. 2. Fluorescent probes for polar-apolar nature and sulfhydryl group accessibility. Biochemistry, 1982, 21, 1853-1858.	1.2	62
20	Difference in Phototoxicity of Cyclodextrin Complexed Fullerene [(γ-CyD) ₂ /C ₆₀] and Its Aggregated Derivatives toward Human Lens Epithelial Cells. Chemical Research in Toxicology, 2009, 22, 660-667.	1.7	60
21	Reduced survival of lens epithelial cells in theαA-crystallin-knockout mouse. Journal of Cell Science, 2003, 116, 1073-1085.	1.2	53
22	Proteome Analysis of Lens Epithelia, Fibers, and the HLE B-3 Cell Line. , 2003, 44, 4829.		52
23	Mechanism of Small Heat Shock Protein Function in Vivo. Journal of Biological Chemistry, 2008, 283, 5801-5814.	1.6	48
24	THE EFFECTS OF NEAR-UV RADIATION ON HUMAN LENS $\hat{1}^2$ -CRYSTALLINS: PROTEIN STRUCTURAL CHANGES and THE PRODUCTION OF O2_and H2O2. Photochemistry and Photobiology, 1989, 50, 97-105.	1.3	47
25	p62 expression and autophagy in αB-crystallin R120G mutant knock-in mouse model of hereditary cataract. Experimental Eye Research, 2013, 115, 263-273.	1.2	43
26	Role of singlet oxygen in the degradation of hyaluronic acid. Biochemical and Biophysical Research Communications, 1983, 115, 894-901.	1.0	41
27	Detection and Prevention of Ocular Phototoxicity of Ciprofloxacin and Other Fluoroquinolone Antibiotics ^{â€} . Photochemistry and Photobiology, 2010, 86, 798-805.	1.3	39
28	A missense mutation in the gammaD crystallin gene (CRYGD) associated with autosomal dominant "coral-like" cataract linked to chromosome 2q. Molecular Vision, 2004, 10, 155-62.	1.1	39
29	Hyperproliferation and p53 Status of Lens Epithelial Cells Derived from αB-crystallin Knockout Mice. Journal of Biological Chemistry, 2003, 278, 36876-36886.	1.6	37
30	Crystallins and hereditary cataracts: molecular mechanisms and potential for therapy. Expert Reviews in Molecular Medicine, 2006, 8, 1-19.	1.6	32
31	Interaction of 8-anilino-1-naphthalenesulfonate with rod outer segment membrane. Biochemistry, 1981, 20, 1687-1693.	1.2	31
32	Metabolism of Lipid Derived Aldehyde, 4-Hydroxynonenal in Human Lens Epithelial Cells and Rat Lens. , 2003, 44, 2675.		30
33	Mechanism of Insolubilization by a Single-Point Mutation in αA-Crystallin Linked with Hereditary Human Cataracts. Biochemistry, 2008, 47, 9697-9706.	1.2	30
34	Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 234-239.	1.1	30
35	Spectroscopic studies on human lens crystallins. BBA - Proteins and Proteomics, 1985, 832, 197-203.	2.1	29
36	Spectroscopic studies on the photooxidation of calf-lens Î ³ -crystallin. Current Eye Research, 1988, 7, 571-579.	0.7	29

#	Article	IF	CITATIONS
37	Ubiquitin-activating Enzyme (E1) Isoforms in Lens Epithelial Cells: Origin of Translation, E2 Specificity and Cellular Localization Determined with Novel Site-specific Antibodies. Experimental Eye Research, 2001, 73, 827-836.	1.2	29
38	In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin. PLoS ONE, 2014, 9, e95507.	1.1	29
39	αA-crystallin R49Cneomutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice. BMC Ophthalmology, 2009, 9, 4.	0.6	27
40	CONFORMATIONAL CHANGES OF BOVINE LENS CRYSTALLINS IN A PHOTODYNAMIC SYSTEM. Photochemistry and Photobiology, 1986, 44, 67-74.	1.3	26
41	Mechanism of Action of VP1-001 in cryAB(R120G)-Associated and Age-Related Cataracts. , 2019, 60, 3320.		25
42	Lens hexokinase deactivation by near-UV irradiation. Current Eye Research, 1988, 7, 257-263.	0.7	24
43	Activation of the unfolded protein response by a cataract-associated αA-crystallin mutation. Biochemical and Biophysical Research Communications, 2010, 401, 192-196.	1.0	24
44	Inhibition of Lens Photodamage by UV-Absorbing Contact Lenses. , 2011, 52, 8330.		24
45	Expression of Recombinant Bovine γB-, γC- and γD-Crystallins and Correlation with Native Proteins. Experimental Eye Research, 1994, 58, 573-584.	1.2	23
46	Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract. PLoS ONE, 2018, 13, e0190817.	1.1	23
47	DNA repair and survival in human lens epithelial cells with extended lifespan. Current Eye Research, 1999, 18, 224-230.	0.7	21
48	ULTRAVIOLET ACTION SPECTRA FOR PHOTOBIOLOGICAL EFFECTS IN CULTURED HUMAN LENS EPITHELIAL CELLS. Photochemistry and Photobiology, 1995, 62, 840-846.	1.3	20
49	In vivo lens deficiency of the R49C αA-crystallin mutant. Experimental Eye Research, 2010, 90, 699-702.	1.2	19
50	Oxidative damage to human lens enzymes. Current Eye Research, 1987, 6, 345-350.	0.7	18
51	Identification of Genes Responsive to UV-A Radiation in Human Lens Epithelial Cells Using Complementary DNA Microarrays¶. Photochemistry and Photobiology, 2004, 80, 61.	1.3	18
52	Conformational changes of βH-crystallin in riboflavin-sensitized photooxidation. Experimental Eye Research, 1988, 47, 1-15.	1.2	17
53	Cell kinetic status of mouse lens epithelial cells lacking αA- and αB-crystallin. Molecular and Cellular Biochemistry, 2004, 265, 115-122.	1.4	17
54	A comparative analysis of αA- and αB-crystallin expression during the cell cycle in primary mouse lens epithelial cultures. Experimental Eye Research, 2004, 79, 795-805.	1.2	17

#	Article	IF	CITATIONS
55	Fluorescence studies on tryptophan and sulfhydryl group changes of bovine lens crystallins in a photodynamic system: Current Eye Research. Current Eye Research, 1985, 4, 831-842.	0.7	16
56	Comparative Proteomic Analysis Identifies Age-Dependent Increases in the Abundance of Specific Proteins after Deletion of the Small Heat Shock Proteins αA- and αB-Crystallin. Biochemistry, 2013, 52, 2933-2948.	1.2	16
57	Spectroscopic studies on the riboflavin-sensitized conformational changes of calf lens α-crystallin. Experimental Eye Research, 1988, 46, 531-544.	1.2	15
58	Immunological Detection of <i>N</i> â€formylkynurenine in Porphyrinâ€Mediated Photooxided Lens αâ€crystallin. Photochemistry and Photobiology, 2011, 87, 1321-1329.	1.3	15
59	Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium. Open Ophthalmology Journal, 2008, 2, 102-106.	0.1	14
60	CHANGE IN SULFHYDRYL GROUP MICROENVIRONMENT OF CALF LENS α-CRYSTALLIN BY 300 nm LIGHT. Photochemistry and Photobiology, 1986, 43, 175-181.	1.3	13
61	Evaluation of the Toxicity of Triamcinolone Acetonide and Dexamethasone Sodium Phosphate on Human Lens Epithelial Cells (HLE B-3). Journal of Ocular Pharmacology and Therapeutics, 2011, 27, 265-271.	0.6	13
62	Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study. Biochemistry, 1988, 27, 810-820.	1.2	12
63	Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PLoS ONE, 2020, 15, e0238081.	1.1	12
64	Phototoxicity in Human Lens Epithelial Cells Promoted by St. John's Wort¶. Photochemistry and Photobiology, 2004, 80, 583.	1.3	12
65	Phototoxicity in Human Lens Epithelial Cells Promoted by St. John's Wort¶. Photochemistry and Photobiology, 2004, 80, 583.	1.3	11
66	Peroxide resistance in human and mouse lens epithelial cell lines is related to long-term changes in cell biology and architecture. Free Radical Biology and Medicine, 2005, 39, 797-810.	1.3	10
67	αA-Crystallin associates with α6 integrin receptor complexes and regulates cellular signaling. Experimental Eye Research, 2010, 91, 640-651.	1.2	10
68	Photoreactions of human lens monomeric crystallins. BBA - Proteins and Proteomics, 1989, 997, 284-291.	2.1	9
69	Induction of Heme Oxygenase-1 Modulates cis-Aconitase Activity in Lens Epithelial Cells. Biochemical and Biophysical Research Communications, 2000, 270, 324-328.	1.0	9
70	Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PLoS ONE, 2021, 16, e0257098.	1.1	9
71	Oxysterol Compounds in Mouse Mutant αA- and αB-Crystallin Lenses Can Improve the Optical Properties of the Lens. , 2022, 63, 15.		8
72	Up-regulation of tau, a brain microtubule-associated protein, in lens cortical fractions of aged alphaA-, alphaB-, and alphaA/B-crystallin knockout mice. Molecular Vision, 2007, 13, 1589-600.	1.1	7

USHA P ANDLEY

#	Article	IF	CITATIONS
73	Quantitative biometric phenotype analysis in mouse lenses. Molecular Vision, 2010, 16, 1041-6.	1.1	6
74	LIGHT-INDUCED CHANGE IN RHODOPSIN EMISSION: PHOSPHORESCENCE and FLUORESCENCE. Photochemistry and Photobiology, 1982, 35, 385-390.	1.3	5
75	Gauri Shankar Singhal (1933–2004): A Photochemist, a Photobiologist, a Great Mentor and a Generous Friend. Photosynthesis Research, 2005, 85, 145-148.	1.6	4
76	In vitro interactions of histones and $\hat{l}\pm$ -crystallin. Biochemistry and Biophysics Reports, 2018, 15, 7-12.	0.7	4
77	Changes in relative histone abundance and heterochromatin in αA-crystallin and αB-crystallin knock-in mutant mouse lenses. BMC Research Notes, 2020, 13, 315.	0.6	3
78	Photosensitized Oxidation Of Lens Crystallins: Role Of Conformational Changes In Cataract. Proceedings of SPIE, 1988, , .	0.8	1
79	Creatine kinase/Î \pm -crystallin interaction functions in cataract development. Biochemistry and Biophysics Reports, 2020, 22, 100748.	0.7	1
80	Identification of Genes Responsive to UVâ€A Radiation in Human Lens Epithelial Cells Using Complementary DNA Microarrays [¶] . Photochemistry and Photobiology, 2004, 80, 61-71.	1.3	0
81	Phototoxicity in Human Lens Epithelial Cells Promoted by St. John's Wort [¶] . Photochemistry and Photobiology, 2004, 80, 583-586.	1.3	0
82	Mechanism of small heat shock protein function in vivo. A knock-in mouse model demonstrates that the R49C mutation in αA-crystallin enhances protein insolubility and cell death Journal of Biological Chemistry, 2009, 284, 35996.	1.6	0