List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980748/publications.pdf Version: 2024-02-01

⊥ஹா CÃ@ப

#	Article	IF	CITATIONS
1	Formation, segmentation and deep crustal structure variations along the Algerian margin from the SPIRAL seismic experiment. Journal of African Earth Sciences, 2022, 186, 104433.	0.9	6
2	Creep-dilatancy development at a transform plate boundary. Nature Communications, 2022, 13, 1913.	5.8	3
3	Evidence for methane isotopic bond re-ordering in gas reservoirs sourcing cold seeps from the Sea of Marmara. Earth and Planetary Science Letters, 2021, 553, 116619.	1.8	23
4	A review of 20Âyears (1999–2019) of Turkish–French collaboration in marine geoscience research in the Sea of Marmara. Mediterranean Geoscience Reviews, 2021, 3, 3-27.	0.6	3
5	Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nature Geoscience, 2021, 14, 787-795.	5.4	59
6	Mayotte seismic crisis: building knowledge in near real-time by combining land and ocean-bottom seismometers, first results. Geophysical Journal International, 2021, 228, 1281-1293.	1.0	30
7	Reply to "Comment on â€~An Alternative View of the Microseismicity along the Western Main Marmara Fault' by E. Batsi etÂal.―by Y. Yamamoto etÂal Bulletin of the Seismological Society of America, 2020, 110, 383-386.	1.1	0
8	Interseismic strain build-up on the submarine North Anatolian Fault offshore Istanbul. Nature Communications, 2019, 10, 3006.	5.8	37
9	Nonseismic Signals in the Ocean: Indicators of Deep Sea and Seafloor Processes on Oceanâ€Bottom Seismometer Data. Geochemistry, Geophysics, Geosystems, 2019, 20, 3882-3900.	1.0	13
10	Onland and Offshore Extrinsic Fabry–Pérot Optical Seismometer at the End of a Long Fiber. Seismological Research Letters, 2019, 90, 2205-2216.	0.8	10
11	Marine Transform Faults and Fracture Zones: A Joint Perspective Integrating Seismicity, Fluid Flow and Life. Frontiers in Earth Science, 2019, 7, .	0.8	46
12	Improved detection and Coulomb stress computations for gas-related, shallow seismicity, in the Western Sea of Marmara. Earth and Planetary Science Letters, 2019, 513, 113-123.	1.8	4
13	Spatial and temporal dynamics of gas-related processes in the Sea of Marmara monitored with ocean bottom seismometers. Geophysical Journal International, 2019, 216, 1989-2003.	1.0	9
14	Gas and seismicity within the Istanbul seismic gap. Scientific Reports, 2018, 8, 6819.	1.6	19
15	Multidisciplinary investigation on cold seeps with vigorous gas emissions in the Sea of Marmara (MarsiteCruise): Strategy for site detection and sampling and first scientific outcome. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 153, 36-47.	0.6	14
16	Multiple gas reservoirs are responsible for the gas emissions along the Marmara fault network. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 153, 48-60.	0.6	21
17	Causes of earthquake spatial distribution beneath the Izu-Bonin-Mariana Arc. Journal of Asian Earth Sciences, 2018, 151, 90-100.	1.0	18
18	An Alternative View of the Microseismicity along the Western Main Marmara Fault. Bulletin of the Seismological Society of America, 2018, 108, 2650-2674.	1.1	13

#	Article	IF	CITATIONS
19	Gas occurrence and shallow conduit systems in the Western Sea of Marmara: a review and new acoustic evidence. Geo-Marine Letters, 2018, 38, 385-402.	0.5	10
20	A statistical approach to relationships between fluid emissions and faults: The Sea of Marmara case. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 153, 131-143.	0.6	14
21	Upward migration of gas in an active tectonic basin: An example from the sea of Marmara. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 153, 17-35.	0.6	12
22	Focused hydrocarbonâ€migration in shallow sediments of a pockmark cluster in the Niger Delta (Off) Tj ETQq0 C	0 0 _{1.9} BT /C	iverlock 10 Tf
23	No significant steady state surface creep along the North Anatolian Fault offshore Istanbul: Results of 6 months of seafloor acoustic ranging. Geophysical Research Letters, 2016, 43, 6817-6825.	1.5	34
24	Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. Journal of Geophysical Research: Solid Earth, 2015, 120, 2891-2912.	1.4	74
25	Pore water geochemistry at two seismogenic areas in the Sea of Marmara. Geochemistry, Geophysics, Geosystems, 2015, 16, 2038-2057.	1.0	19
26	Seismic imaging of the eastern Algerian margin off Jijel: integrating wide-angle seismic modelling and multichannel seismic pre-stack depth migration. Geophysical Journal International, 2014, 198, 1486-1503.	1.0	32
27	Mass Transport Deposits Periodicity Related to Glacial Cycles and Marine-Lacustrine Transitions on a Ponded Basin of the Sea of Marmara (Turkey) Over the Last 500 ka. Advances in Natural and Technological Hazards Research, 2014, , 595-603.	1.1	4
28	Seismic precursors linked to highly compressible fluids at oceanic transform faults. Nature Geoscience, 2014, 7, 757-761.	5.4	19
29	Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara. Marine Geophysical Researches, 2014, 35, 211-229.	0.5	39
30	Character of seismic motion at a location of a gas hydrateâ€bearing mud volcano on the SW Barents Sea margin. Journal of Geophysical Research: Solid Earth, 2014, 119, 6159-6177.	1.4	28
31	Slip rate estimation along the western segment of the Main Marmara Fault over the last 405-490 ka by correlating mass transport deposits. Tectonics, 2013, 32, 1587-1601.	1.3	38
32	Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara,) Tj ETQq0 C	0 0 1 gBT /O	verlock 10 Tf
33	Map helps unravel complexities of the southwestern Pacific Ocean. Eos, 2012, 93, 1-2.	0.1	21

34	Distribution, morphology and triggers of submarine mass wasting in the Sea of Marmara. Marine Geology, 2012, 329-331, 58-74.	0.9	33
35	Heat flow in the Sea of Marmara Central Basin: Possible implications for the tectonic evolution of the North Anatolian fault. Geology, 2012, 40, 3-6.	2.0	35
36	Contribution of highâ€resolution 3D seismic nearâ€seafloor imaging to reservoirâ€scale studies: application to the active North Anatolian Fault, Sea of Marmara. Near Surface Geophysics, 2012, 10,	0.6	22

291-301.

#	Article	IF	CITATIONS
37	Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara. Geophysical Journal International, 2012, 190, 993-1007.	1.0	35
38	How far did the surface rupture of the 1999 İzmit earthquake reach in Sea of Marmara?. Tectonics, 2011, 30, .	1.3	23
39	Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria. Journal of Geophysical Research, 2011, 116, .	3.3	26
40	The MARDEP project: The Sea of Marmara observatory infrastructure for multidisciplinary earthquake and environmental research and monitoring. , 2011, , .		0
41	Sea-Bottom Observations from the Western Escarpment of the Sea of Marmara. Bulletin of the Seismological Society of America, 2011, 101, 775-791.	1.1	19
42	Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Progress in Oceanography, 2011, 91, 1-33.	1.5	91
43	Ocean Gravity Models From Future Satellite Missions. Eos, 2010, 91, 21-22.	0.1	8
44	Pore fluid chemistry of the North Anatolian Fault Zone in the Sea of Marmara: A diversity of sources and processes. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	42
45	Geophysical characterization of bottom simulating reflectors in the Fairway Basin (off New) Tj ETQq1 1 0.78431 Geology, 2009, 266, 80-90.	4 rgBT /O 0.9	verlock 10 Tf 26
46	Free gas and gas hydrates from the Sea of Marmara, Turkey. Chemical Geology, 2009, 264, 197-206.	1.4	111
47	Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the) Tj ETQq1 1 0.78	84314 rgB	T /Qyerlock 1
48	Mesozoic history of the Fairwayâ€Aotea Basin: Implications for the early stages of Gondwana fragmentation. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	49
49	Effect of bandwidth on seismic imaging of rotating stratified turbulence surrounding an anticyclonic eddy from field data and numerical simulations. Geophysical Research Letters, 2009, 36, .	1.5	17
50	High resolution seismic imaging of the ocean structure using a small volume airgun source array in the Gulf of Cadiz. Geophysical Research Letters, 2009, 36, .	1.5	17
51	Heat flow from the Southeast Indian Ridge flanks between 80°E and 140°E: Data review and analysis. Journal of Geophysical Research, 2008, 113, .	3.3	2
52	On the depth of oceanic earthquakes: Brief comments on "The thermal structure of oceanic and continental lithosphereâ€, by McKenzie, D., Jackson, J. and Priestley, K., Earth Plan. Sci. Let., 233, [2005], 337–349. Earth and Planetary Science Letters, 2008, 265, 766-772.	1.8	8
53	Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth and Planetary Science Letters, 2008, 274, 34-39.	1.8	95
54	Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: Relation to late Eocene obduction in New Caledonia, southwest Pacific. Tectonics, 2008, 27, .	1.3	46

#	Article	IF	CITATIONS
55	Brazilian and Angolan Passive Margins: the kinematic constraints. , 2007, , .		Ο
56	Crustal structure of the basin and ridge system west of New Caledonia (southwest Pacific) from wideâ€angle and reflection seismic data. Journal of Geophysical Research, 2007, 112, .	3.3	48
57	Thermal regime of the Southeast Indian Ridge between 88°E and 140°E: Remarks on the subsidence of the ridge flanks. Journal of Geophysical Research, 2007, 112, .	3.3	12
58	Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus - Geoscience, 2006, 338, 1049-1062.	0.4	50
59	2-D and 3-D modelling of wide-angle seismic data: an example from the VÃ,ring volcanic passive margin. Marine Geophysical Researches, 2006, 27, 181-199.	0.5	7
60	Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaÃ ⁻ Ango project). Geophysical Journal International, 2005, 162, 793-810.	1.0	170
61	Seismic imaging of the ocean internal structure: A new tool in physical oceanography?. Eos, 2005, 86, 15.	0.1	3
62	Discovery of continental stretching and oceanic spreading in the Tasman Sea. Eos, 2005, 86, 101.	0.1	12
63	Deep structure of the West African continental margin (Congo, ZaÃ ⁻ re, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 2004, 158, 529-553.	1.0	162
64	MicrOBS: A new generation of ocean bottom seismometer. First Break, 2004, 22, .	0.2	40
65	Reply [to "Comments on "Deep-Penetration Heat Flow Probes Raise Questions About Interpretations From Shorter Probes'â€]. Eos, 2002, 83, 197-199.	0.1	Ο
66	Analysis of propagators along the Pacific–Antarctic Ridge: evidence for triggering by kinematic changes. Earth and Planetary Science Letters, 2002, 199, 415-428.	1.8	19
67	Deep-penetration heat flow probes raise questions about interpretations from shorter probes. Eos, 2001, 82, 317-317.	0.1	12
68	Variations in axial morphology, segmentation, and seafloor roughness along the Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2001, 106, 8521-8546.	3.3	15
69	Crustal structure of a super-slow spreading centre:a seismic refraction study of Mohns Ridge, 72Â N. Geophysical Journal International, 2000, 141, 509-526.	1.0	81
70	geophysical and geochemical constraints on crustal accretion at the very-slow spreading mohns ridge. Geophysical Research Letters, 2000, 27, 1547-1550.	1.5	31
71	Chemical systematics of an intermediate spreading ridge: The Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2000, 105, 2915-2936.	3.3	26
72	Large-scale chemical and thermal division of the Pacific mantle. Nature, 1999, 399, 345-350.	13.7	62

#	Article	IF	CITATIONS
73	Mapping the sedimentary basins of the Barents and Kara Seas using ERS-1 altimetry-geodetic mission. Marine Geophysical Researches, 1998, 20, 109-127.	0.5	2
74	Geochemistry of the Hollister Ridge: relation with the Louisville hotspot and the Pacific–Antarctic Ridge. Earth and Planetary Science Letters, 1998, 160, 777-793.	1.8	32
75	Location of Louisville hotspot and origin of Hollister Ridge: geophysical constraints. Earth and Planetary Science Letters, 1998, 164, 31-40.	1.8	24
76	Evolution of the Pacific-Antarctic Ridge South of the Udintsev Fracture Zone. Science, 1997, 278, 1281-1284.	6.0	36
77	Three-dimensional structure of asthenospheric flow beneath the Southeast Indian Ridge. Journal of Geophysical Research, 1997, 102, 7783-7802.	3.3	26
78	Morphological reorganization within the Pacific-Antarctic Discordance. Earth and Planetary Science Letters, 1996, 137, 157-173.	1.8	15
79	The Southeast Indian Ridge between 127° and 132°40′E: contrasts in segmentation characteristics and implications for crustal accretion. Geological Society Special Publication, 1996, 118, 1-15.	0.8	4
80	The Mid-Atlantic Ridge between 29°N and 31°30â€2N in the last 10 Ma. Earth and Planetary Science Letters, 1995, 130, 45-55.	1.8	46
81	The effect of introducing continuity conditions in the constrained sinusoidal crossover adjustment method to reduce satellite orbit errors. Geophysical Research Letters, 1995, 22, 949-952.	1.5	1
82	Ocean crust formation processes at very slow spreading centers: A model for the Mohns Ridge, near 72°N, based on magnetic, gravity, and seismic data. Journal of Geophysical Research, 1994, 99, 2995-3013.	3.3	51
83	Volcano-tectonic events and sedimentation since Late Miocene times at the Mohns Ridge, near 72°N, in the Norwegian-Greenland Sea. Tectonophysics, 1993, 222, 417-444.	0.9	21
84	Seismic study of the crust of the northern Red Sea and Gulf of Suez. Tectonophysics, 1988, 153, 55-88.	0.9	117
85	Results from three refraction profiles in the northern Red Sea (above 25°N) recorded with an Ocean Bottom Vertical Seismic Array. Tectonophysics, 1988, 153, 89-101.	0.9	10
86	Single-channel seismic reflection data from the East Pacific Rise axis between latitude 11°50′ and 12°54′N. Geology, 1987, 15, 857.	2.0	16
87	Seismic wave propagation in a very permeable waterâ€saturated surface layer. Journal of Geophysical Research, 1987, 92, 7931-7944.	3.3	12