Alice L Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9806140/publications.pdf

Version: 2024-02-01

516710 477307 52 945 16 29 citations g-index h-index papers 53 53 53 872 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity. Molecular Pharmacology, 2010, 78, 1105-1123.	2.3	176
2	A Close Structural Analog of 2-Methyl-6-(phenylethynyl)-pyridine Acts as a Neutral Allosteric Site Ligand on Metabotropic Glutamate Receptor Subtype 5 and Blocks the Effects of Multiple Allosteric Modulators. Molecular Pharmacology, 2005, 68, 1793-1802.	2.3	113
3	Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. Journal of Medicinal Chemistry, 2015, 58, 7485-7500.	6.4	62
4	Development and Antiparkinsonian Activity of VU0418506, a Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor 4 Homomers without Activity at mGlu _{2/4} Heteromers. ACS Chemical Neuroscience, 2016, 7, 1201-1211.	3.5	50
5	Discovery of VU0467485/AZ13713945: An M ₄ PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2017, 8, 233-238.	2.8	43
6	Design and Synthesis of $\langle i \rangle N \langle i \rangle$ -Aryl Phenoxyethoxy Pyridinones as Highly Selective and CNS Penetrant mGlu $\langle sub \rangle 3 \langle sub \rangle$ NAMs. ACS Medicinal Chemistry Letters, 2017, 8, 925-930.	2.8	38
7	Discovery and SAR of novel mGluR5 non-competitive antagonists not based on an MPEP chemotype. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3209-3213.	2.2	34
8	Partial mGlu5 Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology, 2016, 41, 1166-1178.	5.4	33
9	Design and Synthesis of mGlu ₂ NAMs with Improved Potency and CNS Penetration Based on a Truncated Picolinamide Core. ACS Medicinal Chemistry Letters, 2017, 8, 919-924.	2.8	33
10	Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as Selective Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 2. Journal of Medicinal Chemistry, 2015, 58, 9027-9040.	6.4	31
11	Discovery of VU6005649, a CNS Penetrant mGlu _{7/8} Receptor PAM Derived from a Series of Pyrazolo[1,5- <i>a</i>)[1,5- <i]pyrimidines. 1110-1115.<="" 2017,="" 8,="" acs="" chemistry="" letters,="" medicinal="" td=""><td>2.8</td><td>28</td></i]pyrimidines.>	2.8	28
12	VU6010608, a Novel mGlu $<$ sub $>7sub> NAM from a Series of <i>Ni>-(2-(1<i)+(1)-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Medicinal Chemistry Letters, 2017, 8, 1326-1330.$	2.8	18
13	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5179-5184.	2.2	17
14	Discovery of VU2957 (Valiglurax): An mGlu4 Positive Allosteric Modulator Evaluated as a Preclinical Candidate for the Treatment of Parkinson's Disease. ACS Medicinal Chemistry Letters, 2019, 10, 255-260.	2.8	17
15	Discovery and SAR of a novel series of non-MPEP site mGlu5 PAMs based on an aryl glycine sulfonamide scaffold. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7388-7392.	2.2	16
16	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and in vivo characterization of a series of 3-aminoazetidine-derived amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2990-2995.	2.2	16
17	Discovery, Structure–Activity Relationship, and Biological Characterization of a Novel Series of 6-((1 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridin-3-yl)amino)-benzo[<i>d</i>]isothiazole-3-carboxamides as Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 4 (mGlu ₄). lournal of Medicinal Chemistry, 2019, 62, 342-358.	6.4	16
18	Discovery of a novel 2,4-dimethylquinoline-6-carboxamide M 4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4999-5001.	2.2	15

#	Article	IF	Citations
19	Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1211-1214.	2.2	14
20	Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4282-4286.	2.2	11
21	Discovery of the First Selective M ₄ Muscarinic Acetylcholine Receptor Antagonists with <i>in Vivo</i> Antiparkinsonian and Antidystonic Efficacy. ACS Pharmacology and Translational Science, 2021, 4, 1306-1321.	4.9	11
22	Recent progress in the development of allosteric modulators of mGluR5. Current Opinion in Drug Discovery & Development, 2007, 10, 715-22.	1.9	11
23	novel, CNS penetrant pan-muscarinic antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3576-3581.	2.2	10
24	Discovery of VU0431316: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3307-3314.	2.2	9
25	N-Alkylpyrido[1′,2′:1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1894-1900.	2.2	9
26	Discovery and characterization of N-(1,3-dialkyl-1H-indazol-6-yl)-1H-pyrazolo[4,3-b]pyridin-3-amine scaffold as mGlu4 positive allosteric modulators that mitigate CYP1A2 induction liability. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2641-2646.	2,2	9
27	Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4274-4279.	2.2	8
28	Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4858-4866.	2.2	8
29	Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu (sub)7 (sub) Positive Allosteric Modulator Tool Compound. ACS Medicinal Chemistry Letters, 2020, 11, 1773-1779.	2.8	8
30	Development of VU6019650 : A Potent, Highly Selective, and Systemically Active Orthosteric Antagonist of the M ₅ Muscarinic Acetylcholine Receptor for the Treatment of Opioid Use Disorder. Journal of Medicinal Chemistry, 2022, 65, 6273-6286.	6.4	8
31	Discovery of a novel 3,4-dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126678.	2.2	7
32	VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1714-1718.	2.2	6
33	The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 342-346.	2.2	6
34	Discovery of VU6028418: A Highly Selective and Orally Bioavailable M4 Muscarinic Acetylcholine Receptor Antagonist. ACS Medicinal Chemistry Letters, 2021, 12, 1342-1349.	2.8	6
35	Discovery and characterization of a novel series of N -phenylsulfonyl-1 H -pyrrole picolinamides as positive allosteric modulators of the metabotropic glutamate receptor 4 (mGlu 4). Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2984-2987.	2.2	5
36	Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 47-50.	2.2	5

#	Article	IF	CITATIONS
37	Synthesis and SAR of a series of mGlu7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127529.	2.2	5
38	SAR inspired by aldehyde oxidase (AO) metabolism: Discovery of novel, CNS penetrant tricyclic M4 PAMs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2224-2228.	2.2	4
39	Novel M4 positive allosteric modulators derived from questioning the role and impact of a presumed intramolecular hydrogen-bonding motif in \hat{l}^2 -amino carboxamide-harboring ligands. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 362-366.	2.2	4
40	Discovery of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126811.	2.2	3
41	Discovery and optimization of a novel CNS penetrant series of mGlu4 PAMs based on a 1,4-thiazepane core with in vivo efficacy in a preclinical Parkinsonian model. Bioorganic and Medicinal Chemistry Letters, 2021, 37, 127838.	2.2	3
42	Discovery of "Molecular Switches―within a Series of mGlu ₅ Allosteric Ligands Driven by a "Magic Methyl―Effect Affording Both PAMs and NAMs with <i>In Vivo</i> Activity, Derived from an M ₁ PAM Chemotype. ACS Bio & Med Chem Au, 2021, 1, 21-30.	3.7	3
43	Synthesis and pharmacological evaluation of bivalent tethered ligands to target the mGlu2/4 heterodimeric receptor results in a compound with mGlu2/2 homodimer selectivity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127212.	2.2	3
44	Discovery of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1679-1685.	2.2	2
45	Evaluation of Synthetic Cytochrome P ₄₅₀ -Mimetic Metalloporphyrins To Facilitate "Biomimetic―Biotransformation of a Series of mGlu ₅ Allosteric Ligands. ACS Omega, 2019, 4, 12782-12789.	3.5	2
46	Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M4 positive allosteric modulator (PAM) chemotype. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126812.	2.2	2
47	Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 4: SAR reveals positive cooperativity across multiple mGlu receptor subtypes leading to subtype unselective PAMs. Bioorganic and Medicinal Chemistry Letters, 2021, 32, 127724.	2.2	2
48	Discovery of a novel class of heteroaryl-pyrrolidinones as positive allosteric modulators of the muscarinic acetylcholine receptor M1. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128193.	2.2	2
49	Positive allosteric modulators (PAMs) of the group II metabotropic glutamate receptors: Design, synthesis, and evaluation as ex-vivo tool compounds. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128342.	2.2	2
50	Synthesis and characterization of chiral 6-azaspiro [2.5] octanes as potent and selective antagonists of the M4 muscarinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters, 2022, 56, 128479.	2.2	1
51	Further exploration of an N-aryl phenoxyethoxy pyridinone-based series of mGlu3 NAMs: Challenging SAR, enantiospecific activity and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2670-2674.	2.2	O
52	Development of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes - Part 2. Bioorganic and Medicinal Chemistry Letters, 2021, 53, 128416.	2.2	0