Claudio Ampelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen reduction reaction to ammonia at ambient conditions: A short review analysis of the critical factors limiting electrocatalytic performance. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100604.	5.9	11
2	Dynamics at Polarized Carbon Dioxide–Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation. ACS Catalysis, 2022, 12, 411-430.	11.2	19
3	A novel gas flow-through photocatalytic reactor based on copper-functionalized nanomembranes for the photoreduction of CO2 to C1-C2 carboxylic acids and C1-C3 alcohols. Chemical Engineering Journal, 2021, 408, 127250.	12.7	31
4	Role of nanostructure in the behaviour of BiVO4–TiO2 nanotube photoanodes for solar water splitting in relation to operational conditions. Solar Energy Materials and Solar Cells, 2021, 223, 110980.	6.2	4
5	Electrocatalytic reduction of CO2 over dendritic-type Cu- and Fe-based electrodes prepared by electrodeposition. Journal of CO2 Utilization, 2020, 35, 194-204.	6.8	20
6	Enhancing N ₂ Fixation Activity by Converting Ti ₃ C ₂ MXenes Nanosheets to Nanoribbons. ChemSusChem, 2020, 13, 5614-5619.	6.8	26
7	Direct Synthesis of Ammonia from N ₂ and H ₂ O on Different Iron Species Supported on Carbon Nanotubes using a Gasâ€Phase Electrocatalytic Flow Reactor. ChemElectroChem, 2020, 7, 3028-3037.	3.4	12
8	Electrode design for ammonia synthesis. Nature Catalysis, 2020, 3, 420-421.	34.4	28
9	Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. Journal of Electroanalytical Chemistry, 2020, 873, 114354.	3.8	52
10	Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles. Journal of Energy Chemistry, 2020, 49, 22-32.	12.9	31
11	CO ₂ Reduction of Hybrid Cu ₂ O–Cu/Gas Diffusion Layer Electrodes and their Integration in a Cuâ€based Photoelectrocatalytic Cell. ChemSusChem, 2019, 12, 4274-4284.	6.8	39
12	Production of Solar Fuels Using CO2. Studies in Surface Science and Catalysis, 2019, , 7-30.	1.5	11
13	Electrochemical Dinitrogen Activation: To Find a Sustainable Way to Produce Ammonia. Studies in Surface Science and Catalysis, 2019, 178, 31-46.	1.5	20
14	Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications, 2018, 9, 935.	12.8	182
15	Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh. Solar Energy Materials and Solar Cells, 2018, 178, 98-105.	6.2	26
16	Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Applied Catalysis B: Environmental, 2018, 224, 136-145.	20.2	149
17	Development of photoanodes for photoelectrocatalytic solar cells based on copper-based nanoparticles on titania thin films of vertically aligned nanotubes. Catalysis Today, 2018, 304, 190-198.	4.4	11
18	Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors, 2018, 18, 3566.	3.8	17

CLAUDIO AMPELLI

#	Article	IF	CITATIONS
19	Photoactive materials based on semiconducting nanocarbons – A challenge opening new possibilities for photocatalysis. Journal of Energy Chemistry, 2017, 26, 207-218.	12.9	31
20	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie, 2017, 129, 2743-2747.	2.0	98
21	Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbonâ€Nanotubeâ€Based Electrocatalyst. Angewandte Chemie - International Edition, 2017, 56, 2699-2703.	13.8	516
22	Mechanism of C–C bond formation in the electrocatalytic reduction of CO ₂ to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chemistry, 2017, 19, 2406-2415.	9.0	125
23	Engineering of photoanodes based on ordered TiO 2 -nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chemical Engineering Journal, 2017, 320, 352-362.	12.7	43
24	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	6.8	50
25	Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. Journal of CO2 Utilization, 2017, 21, 534-542.	6.8	49
26	Room-Temperature Electrocatalytic Synthesis of NH ₃ from H ₂ O and N ₂ in a Gas–Liquid–Solid Three-Phase Reactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 7393-7400.	6.7	158
27	Beyond Solar Fuels: Renewable Energyâ€Driven Chemistry. ChemSusChem, 2017, 10, 4409-4419.	6.8	79
28	Analysis of the factors controlling performances of Au-modified TiO 2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells. Journal of Energy Chemistry, 2017, 26, 284-294.	12.9	28
29	Nanoscale Engineering in the Development of Photoelectrocatalytic Cells for Producing Solar Fuels. Topics in Catalysis, 2016, 59, 757-771.	2.8	24
30	A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural. Topics in Catalysis, 2016, 59, 1659-1667.	2.8	20
31	On the nature of the active sites in the selective oxidative esterification of furfural on Au/ZrO 2 catalysts. Catalysis Today, 2016, 278, 56-65.	4.4	31
32	Electrolyte-less design of PEC cells for solar fuels: Prospects and open issues in the development of cells and related catalytic electrodes. Catalysis Today, 2016, 259, 246-258.	4.4	70
33	CO2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. Journal of Applied Electrochemistry, 2015, 45, 701-713.	2.9	38
34	CO ₂ utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140177.	3.4	145
35	Monitoring of glucose in fermentation processes by using Au/TiO2 composites as novel modified electrodes. Journal of Applied Electrochemistry, 2015, 45, 943-951.	2.9	12
36	Electrocatalytic conversion of CO ₂ to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discussions, 2015, 183, 125-145.	3.2	59

CLAUDIO AMPELLI

#	Article	IF	CITATIONS
37	A gas-phase reactor powered by solar energy and ethanol for H2 production. Applied Thermal Engineering, 2014, 70, 1270-1275.	6.0	26
38	Carbon-based catalysts: Opening new scenario to develop next-generation nano-engineered catalytic materials. Chinese Journal of Catalysis, 2014, 35, 783-791.	14.0	40
39	Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. Journal of Energy Chemistry, 2013, 22, 202-213.	12.9	102
40	Photoelectrochemical properties of doped lanthanum orthoferrites. Electrochimica Acta, 2013, 109, 710-715.	5.2	43
41	Electrocatalytic conversion of CO2 on carbon nanotube-based electrodes for producing solar fuels. Journal of Catalysis, 2013, 308, 237-249.	6.2	80
42	H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites. RSC Advances, 2013, 3, 21776.	3.6	70
43	The use of a solar photoelectrochemical reactor for sustainable production of energy. Theoretical Foundations of Chemical Engineering, 2012, 46, 651-657.	0.7	26
44	Anodically Formed TiO ₂ Thin Films: Evidence for a Multiparameter Dependent Photocurrent-Structure Relationship. Nanoscience and Nanotechnology Letters, 2012, 4, 142-148.	0.4	25
45	Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy and Environmental Science, 2010, 3, 292.	30.8	159
46	Synthesis of TiO2 Thin Films: Relationship Between Preparation Conditions and Nanostructure. Topics in Catalysis, 2008, 50, 133-144.	2.8	32
47	Reaction Inhibition as a Method for Preventing Thermal Runaway in Industrial Processes. Macromolecular Symposia, 2007, 259, 365-370.	0.7	11
48	Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes. Journal of Loss Prevention in the Process Industries, 2006, 19, 419-424.	3.3	24
49	Fitting isoperibolic calorimeter data for reactions with pseudo-first order chemical kinetics. Journal of Thermal Analysis and Calorimetry, 2005, 79, 89-94.	3.6	6
50	An isotropic analytical vector Preisach model based on the Lorentzian function. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3740-3743.	0.8	0
51	The integration of an ultraviolet-visible spectrometer and a reaction calorimeter. Journal of Thermal Analysis and Calorimetry, 2003, 72, 875-883.	3.6	8