Albino A Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980435/publications.pdf

Version: 2024-02-01

41 papers 1,497 citations

20 h-index 315739 38 g-index

42 all docs 42 docs citations

times ranked

42

1984 citing authors

#	Article	IF	Citations
1	Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton's reagent-yeast. Water Research, 2007, 41, 1103-1109.	11.3	166
2	Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 2009, 100, 4829-4835.	9.6	148
3	Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresource Technology, 2010, 101, 6045-6050.	9.6	143
4	Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme and Microbial Technology, 2006, 39, 51-55.	3.2	97
5	Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Feed Science and Technology, 2008, 141, 326-338.	2.2	95
6	Enzymatic kinetic of cellulose hydrolysis. Applied Biochemistry and Biotechnology, 2005, 126, 49-59.	2.9	84
7	Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresource Technology, 2004, 92, 7-13.	9.6	80
8	Discrimination Among Eight Modified Michaelis-Menten Kinetics Models of Cellulose Hydrolysis With a Large Range of Substrate/Enzyme Ratios: Inhibition by Cellobiose. Applied Biochemistry and Biotechnology, 2004, 112, 173-184.	2.9	79
9	Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresource Technology, 2012, 111, 261-267.	9.6	75
10	In vivo and laccase-catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: characterization of its ligninolytic system. World Journal of Microbiology and Biotechnology, 2003, 19, 969-975.	3.6	48
11	Winery wastewater treatment by combination of Cryptococcus laurentii and Fenton's reagent. Chemosphere, 2014, 117, 53-58.	8.2	37
12	Screening of fungal isolates and properties of Ganoderma applanatum intended for olive mill wastewater decolourization and dephenolization. Letters in Applied Microbiology, 2007, 45, 270-275.	2.2	33
13	Influence of culture medium growth variables on Ganoderma lucidum exopolysaccharides structural features. Carbohydrate Polymers, 2014, 111, 936-946.	10.2	33
14	The potential of whiteâ€rot fungi to degrade phorbol esters of <i>Jatropha curcas</i> L. seed cake. Engineering in Life Sciences, 2011, 11, 107-110.	3.6	30
15	Biodegradation of olive mill wastewaters by a wild isolate of Candida oleophila. International Biodeterioration and Biodegradation, 2012, 68, 45-50.	3.9	29
16	Cellulose Hydrolysis by Cellobiohydrolase Cel7A Shows Mixed Hyperbolic Product Inhibition. Applied Biochemistry and Biotechnology, 2011, 165, 178-189.	2.9	28
17	Utilization of integrated Michaelis–Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel. Computer Methods and Programs in Biomedicine, 2013, 109, 26-31.	4.7	28
18	Diagnosis of Enzyme Inhibition Using Excel Solver: A Combined Dry and Wet Laboratory Exercise. Journal of Chemical Education, 2014, 91, 1017-1021.	2.3	27

#	Article	IF	Citations
19	Utilization of integrated Michaelis-Menten equation to determine kinetic constants. Biochemistry and Molecular Biology Education, 2007, 35, 145-150.	1.2	24
20	Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. Ecotoxicology and Environmental Safety, 2019, 183, 109493.	6.0	24
21	Simultaneous Ethanol and Cellobiose Inhibition of Cellulose Hydrolysis Studied With Integrated Equations Assuming Constant or Variable Substrate Concentration. Applied Biochemistry and Biotechnology, 2006, 134, 27-38.	2.9	20
22	Gallic acid photochemical oxidation as a model compound of winery wastewaters. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1288-1295.	1.7	20
23	Pretreatment of Grape Stalks by Fungi: Effect on Bioactive Compounds, Fiber Composition, Saccharification Kinetics and Monosaccharides Ratio. International Journal of Environmental Research and Public Health, 2020, 17, 5900.	2.6	17
24	Fungal biodegradation and multi-level toxicity assessment of vinasse from distillation of winemaking by-products. Chemosphere, 2020, 238, 124572.	8.2	16
25	Environmental Applications of Fungal and Plant Systems: Decolourisation of Textile Wastewater and Related Dyestuffs., 2007,, 445-463.		16
26	Leguminous Cover Crops Improve the Profitability and the Sustainability of Rainfed Olive (Olea) Tj ETQq0 0 0 rgE Environmental Sciences, 2015, 29, 282-283.	BT /Overloo 1.4	ck 10 Tf 50 4 14
27	Decolorization of Azo Dyes by Yeasts. Handbook of Environmental Chemistry, 2010, , 183-193.	0.4	12
28	Effects of the dietary incorporation of untreated and white-rot fungi (Ganoderma resinaceum Boud) pre-treated olive leaves on growing rabbits. Animal Feed Science and Technology, 2012, 173, 244-251.	2.2	11
29	Phenolic and non-phenolic substrates oxidation by laccase at variable oxygen concentrations: Selection of bisubstrate kinetic models from polarographic data. Biochemical Engineering Journal, 2020, 153, 107423.	3.6	11
30	Enzyme inhibition studies by integrated Michaelis–Menten equation considering simultaneous presence of two inhibitors when one of them is a reaction product. Computer Methods and Programs in Biomedicine, 2016, 125, 2-7.	4.7	10
31	An Easy Method for Screening and Detection of Laccase Activity. Open Biotechnology Journal, 2017, 11, 89-93.	1.2	9
32	Endopolysaccharides from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor Affect Differently the Proliferation Rate of HepG2 Cells. Applied Biochemistry and Biotechnology, 2013, 169, 1919-1926.	2.9	8
33	Mediterranean forested wetlands are yeast hotspots for bioremediation: a case study using azo dyes. Scientific Reports, 2018, 8, 15943.	3.3	8
34	Discrimination between rival laccase inhibition models from data sets with one inhibitor concentration using a penalized likelihood analysis and Akaike weights. Biocatalysis and Biotransformation, 2018, 36, 401-407.	2.0	5
35	Removal pattern of vinasse phenolics by Phlebia rufa, characterization of an induced laccase and inhibition kinetics modeling. Biodegradation, 2021, 32, 287-298.	3.0	3
36	Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration. Applied Biochemistry and Biotechnology, 2006, 134, 27-38.	2.9	3

Albino A Dias

#	Article	IF	CITATIONS
37	Selection, engineering, and expression of microbial enzymes. , 2018, , 1-29.		2
38	A Kinetic Process to Determine the Interaction Type Between Two Compounds, One of Which Is a Reaction Product, Using Alkaline Phosphatase Inhibition as a Case Study. Applied Biochemistry and Biotechnology, 2020, 191, 657-665.	2.9	1
39	Kinetic Analysis Misinterpretations Due to the Occurrence of Enzyme Inhibition by Reaction Product: Comparison between Initial Velocities and Reaction Time Course Methodologies. Applied Sciences (Switzerland), 2022, 12, 102.	2.5	1
40	Could basidiomycetes fungi be an alternative for the treatment of fibrous feedstuffs? application of enzymatic complexes and future prospects. Revista Brasileira De Zootecnia, 2010, 39, 519-527.	0.8	0
41	Solid-State Fermentation of Chestnut Shells and Effect of Explanatory Variables in Predictive Saccharification Models. International Journal of Environmental Research and Public Health, 2022, 19, 2572.	2.6	0