
Daniel A Barbash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9803140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stonewall prevents expression of ectopic genes in the ovary and accumulates at insulator elements in D. melanogaster. PLoS Genetics, 2022, 18, e1010110.	1.5	9
2	Patterns of piRNA Regulation in <i>Drosophila</i> Revealed through Transposable Element Clade Inference. Molecular Biology and Evolution, 2022, 39, .	3.5	7
3	Divergent selection on behavioural and chemical traits between reproductively isolated populations of <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2022, 35, 693-707.	0.8	4
4	Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics, 2021, 217, .	1.2	16
5	Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends in Genetics, 2020, 36, 474-489.	2.9	29
6	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. PLoS Genetics, 2020, 16, e1008861.	1.5	12
7	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
8	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
9	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
10	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
11	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
12	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
13	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
14	Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. , 2020, 16, e1008861.		0
15	Variable Rates of Simple Satellite Gains across the Drosophila Phylogeny. Molecular Biology and Evolution, 2018, 35, 925-941.	3.5	65
16	Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Research, 2018, 28, 714-725.	2.4	52
17	Satellite DNA evolution: old ideas, new approaches. Current Opinion in Genetics and Development, 2018, 49, 70-78.	1.5	142
18	Did Mitochondria Kill the Frog?. Developmental Cell, 2018, 44, 539-541.	3.1	3

DANIEL A BARBASH

#	Article	IF	CITATIONS
19	Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. Genome Biology and Evolution, 2018, 10, 1673-1686.	1.1	21
20	A Pooled Sequencing Approach Identifies a Candidate Meiotic Driver in <i>Drosophila</i> . Genetics, 2017, 206, 451-465.	1.2	50
21	Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in <i>Drosophila</i> . Genetics, 2017, 207, 825-842.	1.2	33
22	The Hybrid Incompatibility Genes <i>Lhr</i> and <i>Hmr</i> Are Required for Sister Chromatid Detachment During Anaphase but Not for Centromere Function. Genetics, 2017, 207, 1457-1472.	1.2	22
23	Beyond speciation genes: an overview of genome stability in evolution and speciation. Current Opinion in Genetics and Development, 2017, 47, 17-23.	1.5	62
24	The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genetics, 2015, 11, e1005453.	1.5	31
25	Adaptive Evolution of Genes Involved in the Regulation of Germline Stem Cells in Drosophila melanogaster and D. simulans. G3: Genes, Genomes, Genetics, 2015, 5, 583-592.	0.8	22
26	Normal Segregation of a Foreign-Species Chromosome During <i>Drosophila</i> Female Meiosis Despite Extensive Heterochromatin Divergence. Genetics, 2015, 199, 73-83.	1.2	5
27	Highly Constrained Intergenic Drosophila Ultraconserved Elements Are Candidate ncRNAs. Genome Biology and Evolution, 2015, 7, 689-698.	1.1	16
28	Never Settling Down: Frequent Changes in Sex Chromosomes. PLoS Biology, 2015, 13, e1002077.	2.6	7
29	The Hmr and Lhr Hybrid Incompatibility Genes Suppress a Broad Range of Heterochromatic Repeats. PLoS Genetics, 2014, 10, e1004240.	1.5	89
30	A Screen for F1 Hybrid Male Rescue Reveals No Major-Effect Hybrid Lethality Loci in the <i>Drosophila melanogaster</i> Autosomal Genome. G3: Genes, Genomes, Genetics, 2014, 4, 2451-2460.	0.8	5
31	Correlated variation and population differentiation in satellite DNA abundance among lines of <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18793-18798.	3.3	88
32	Limited Gene Misregulation Is Exacerbated by Allele-Specific Upregulation in Lethal Hybrids between Drosophila melanogaster and Drosophila simulans. Molecular Biology and Evolution, 2014, 31, 1767-1778.	3.5	16
33	Analysis of piRNA-Mediated Silencing of Active TEs in Drosophila melanogaster Suggests Limits on the Evolution of Host Genome Defense. Molecular Biology and Evolution, 2013, 30, 1816-1829.	3.5	61
34	Drosophila Interspecific Hybrids Phenocopy piRNA-Pathway Mutants. PLoS Biology, 2012, 10, e1001428.	2.6	84
35	Response to Comment on "A Test of the Snowball Theory for the Rate of Evolution of Hybrid Incompatibilities― Science, 2011, 333, 1576-1576.	6.0	4
36	Comment on "A Test of the Snowball Theory for the Rate of Evolution of Hybrid Incompatibilities― Science, 2011, 333, 1576-1576.	6.0	7

DANIEL A BARBASH

#	Article	IF	CITATIONS
37	Genetic Testing of the Hypothesis That Hybrid Male Lethality Results From a Failure in Dosage Compensation. Genetics, 2010, 184, 313-316.	1.2	20
38	Ninety Years of <i>Drosophila melanogaster</i> Hybrids. Genetics, 2010, 186, 1-8.	1.2	58
39	Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biology, 2008, 9, R39.	13.9	80
40	Clash of the Genomes. Cell, 2008, 135, 1002-1003.	13.5	3
41	Nup96-Dependent Hybrid Lethality Occurs in a Subset of Species From the simulans Clade of Drosophila. Genetics, 2007, 176, 543-552.	1.2	14
42	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	13.7	1,886