
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9801386/publications.pdf Version: 2024-02-01

AKINODI KIMUDA

#	Article	IF	CITATIONS
1	The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy. Cell, 2002, 111, 943-955.	13.5	712
2	Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genetics, 1997, 16, 379-382.	9.4	540
3	Structural Analysis of the Titin Gene in Hypertrophic Cardiomyopathy: Identification of a Novel Disease Gene. Biochemical and Biophysical Research Communications, 1999, 262, 411-417.	1.0	295
4	Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. Journal of the American College of Cardiology, 2004, 44, 2192-2201.	1.2	271
5	Titin Mutations as the Molecular Basis for Dilated Cardiomyopathy. Biochemical and Biophysical Research Communications, 2002, 291, 385-393.	1.0	239
6	Laminin-α4 and Integrin-Linked Kinase Mutations Cause Human Cardiomyopathy Via Simultaneous Defects in Cardiomyocytes and Endothelial Cells. Circulation, 2007, 116, 515-525.	1.6	206
7	DNA typing of HLA Class II genes in B″ymphoblastoid cell lines homozygous for HLA. Tissue Antigens, 1992, 40, 5-12.	1.0	188
8	αB-crystallin mutation in dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2006, 342, 379-386.	1.0	180
9	Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications, 2004, 313, 178-184.	1.0	153
10	Cardiac Ankyrin Repeat Protein Gene (ANKRD1) Mutations in Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2009, 54, 334-342.	1.2	147
11	Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. Journal of Human Genetics, 2008, 53, 357-359.	1.1	133
12	A Cypher/ZASP Mutation Associated with Dilated Cardiomyopathy Alters the Binding Affinity to Protein Kinase C. Journal of Biological Chemistry, 2004, 279, 6746-6752.	1.6	132
13	Endothelinâ€1 Induces Myofibrillar Disarray and Contractile Vector Variability in Hypertrophic Cardiomyopathy–Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Journal of the American Heart Association, 2014, 3, e001263.	1.6	131
14	Identification of lκBL as the Second Major Histocompatibility Complex–Linked Susceptibility Locus for Rheumatoid Arthritis. American Journal of Human Genetics, 2003, 72, 303-312.	2.6	125
15	A novelSCN5Amutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Letters, 2000, 479, 29-34.	1.3	123
16	Dilated cardiomyopathy-associated <i>BAG3</i> mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Human Mutation, 2011, 32, 1481-1491.	1.1	120
17	ANKRD1, the Gene Encoding Cardiac Ankyrin Repeat Protein, Is a Novel Dilated Cardiomyopathy Gene. Journal of the American College of Cardiology, 2009, 54, 325-333.	1.2	115
18	ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovascular Research, 2017, 113, 760-769.	1.8	111

#	Article	IF	CITATIONS
19	Lifelong Left Ventricular Remodeling of Hypertrophic Cardiomyopathy Caused by a Founder Frameshift Deletion Mutation in the Cardiac Myosin-Binding Protein C Gene Among Japanese. Journal of the American College of Cardiology, 2005, 46, 1737-1743.	1.2	107
20	Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5?-flanking region of the TNF? gene and HLA genes. Arthritis and Rheumatism, 1999, 42, 2577-2582.	6.7	98
21	Polymerase chain reaction—single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: A simple, economical, and rapid method for histocompatibility testing. Human Immunology, 1992, 33, 98-107.	1.2	89
22	Role of HCN4 channel in preventing ventricular arrhythmia. Journal of Human Genetics, 2009, 54, 115-121.	1.1	84
23	Nebulette Mutations Are Associated With Dilated Cardiomyopathy and Endocardial Fibroelastosis. Journal of the American College of Cardiology, 2010, 56, 1493-1502.	1.2	84
24	Molecular genetics and pathogenesis of cardiomyopathy. Journal of Human Genetics, 2016, 61, 41-50.	1.1	84
25	Structural analysis of obscurin gene in hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications, 2007, 362, 281-287.	1.0	80
26	Prevalence and Distribution of Sarcomeric Gene Mutations in Japanese Patients With Familial Hypertrophic Cardiomyopathy. Circulation Journal, 2012, 76, 453-461.	0.7	79
27	Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. Journal of Muscle Research and Cell Motility, 2006, 26, 367-374.	0.9	70
28	Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. Journal of Human Genetics, 2010, 55, 81-90.	1.1	70
29	Novel <i>SCN3B</i> Mutation Associated With Brugada Syndrome Affects Intracellular Trafficking and Function of Nav1.5. Circulation Journal, 2013, 77, 959-967.	0.7	70
30	A polymorphism of the 5′ flanking region of tumour necrosis factor α gene is associated with thyroid-associated ophthalmopathy in Japanese. Clinical Endocrinology, 2000, 52, 759-764.	1.2	69
31	Association of clinical manifestations with HLA-B alleles in Takayasu arteritis. International Journal of Cardiology, 1998, 66, S121-S126.	0.8	64
32	Impaired binding of ZASP/Cypher with phosphoglucomutase 1 is associated with dilated cardiomyopathy. Cardiovascular Research, 2009, 83, 80-88.	1.8	61
33	Molecular Etiology and Pathogenesis of Hereditary Cardiomyopathy. Circulation Journal, 2008, 72, A38-A48.	0.7	60
34	Hepatitis C Virus Infection and Heart Diseases. Japanese Circulation Journal, 1998, 62, 389-391.	1.0	58
35	A Myosin Missense Mutation, Not A Null Allele, Causes Familial Hypertrophic Cardiomyopathy. Circulation, 1995, 91, 2911-2915.	1.6	58
36	Genetic defects in a His-Purkinje system transcription factor, <i>IRX3</i> , cause lethal cardiac arrhythmias. European Heart Journal, 2016, 37, 1469-1475.	1.0	56

#	Article	IF	CITATIONS
37	Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Human Genetics, 2000, 107, 440-451.	1.8	55
38	Structural analysis of four and half LIM protein-2 in dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 2007, 357, 162-167.	1.0	55
39	Polymorphisms in the Plateletâ€Endothelial Cell Adhesion Moleculeâ€1 (PECAMâ€1) Gene, Asn563Ser and Gly670Arg, Associated with Myocardial Infarction in the Japanese. Annals of the New York Academy of Sciences, 2001, 947, 259-270.	1.8	54
40	The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Science Signaling, 2018, 11, .	1.6	51
41	Genetic determinants and an epistasis of <i>LILRA3</i> and HLA-B*52 in Takayasu arteritis. Proceedings of the United States of America, 2018, 115, 13045-13050.	3.3	51
42	HLAâ€ÐP antigen and Takayasu arteritis. Tissue Antigens, 1992, 39, 106-110.	1.0	50
43	Genetic control of nonresponsiveness to hepatitis B virus vaccine by an extended HLA haplotype. European Journal of Immunology, 1992, 22, 1899-1905.	1.6	50
44	Dilated Cardiomyopathy-Associated <i>FHOD3</i> Variant Impairs the Ability to Induce Activation of Transcription Factor Serum Response Factor. Circulation Journal, 2013, 77, 2990-2996.	0.7	50
45	Mapping of the HLA-linked genes controlling the susceptibility to Takayasu's arteritis. International Journal of Cardiology, 2000, 75, S105-S110.	0.8	49
46	DQw1 ? Gene from HLA-DR2-Dw12 consists of six exons and expresses multiple DQw1 ? polypeptides through alternative splicing. Immunogenetics, 1987, 25, 343-346.	1.2	48
47	Diversity of MHC class I genes in Burmese-origin rhesus macaques. Immunogenetics, 2010, 62, 601-611.	1.2	46
48	HLA-Linked susceptibility and resistance to Takayasu Arteritis. Heart and Vessels, 1992, 7, 73-80.	0.5	43
49	Nuclear accumulation of androgen receptor in gender difference of dilated cardiomyopathy due to lamin A/C mutations. Cardiovascular Research, 2013, 99, 382-394.	1.8	41
50	Synergistic contribution of CD14 and HLA loci in the susceptibility to Buerger disease. Human Genetics, 2007, 122, 367-372.	1.8	38
51	MICA gene polymorphism in Takayasu's arteritis and Buerger's disease. International Journal of Cardiology, 1998, 66, S107-S113.	0.8	37
52	HLA-DRB1 Alleles as Genetic Risk Factors for the Development of Anti-MDA5 Antibodies in Patients with Dermatomyositis. Journal of Rheumatology, 2017, 44, 1389-1393.	1.0	37
53	Interaction of BMP10 with Tcap may modulate the course of hypertensive cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3396-H3403.	1.5	34
54	Association Study of CD14 Polymorphism With Myocardial Infarction in a Japanese Population. International Heart Journal, 2003, 44, 613-622.	0.6	33

#	Article	IF	CITATIONS
55	Contribution of Genetic Factors to the Pathogenesis of Dilated Cardiomyopathy - The Cause of Dilated Cardiomyopathy: Genetic or Acquired? (Genetic-Side) Circulation Journal, 2011, 75, 1756-1765.	0.7	33
56	Direct Determination of Single Nucleotide Polymorphism Haplotype of NFKBIL1 Promoter Polymorphism by DNA Conformation Analysis and Its Application to Association Study of Chronic Inflammatory Diseases. Human Immunology, 2006, 67, 363-373.	1.2	32
57	Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics, 2012, 64, 131-141.	1.2	30
58	HLA-DPB1 and NFKBIL1 may confer the susceptibility to chronic thromboembolic pulmonary hypertension in the absence of deep vein thrombosis. Journal of Human Genetics, 2009, 54, 108-114.	1.1	29
59	Clinical Significance of T-Wave Alternans in Hypertrophic Cardiomyopathy Circulation Journal, 2002, 66, 457-462.	0.7	28
60	The role of a common TNNT2 polymorphism in cardiac hypertrophy. Journal of Human Genetics, 2004, 49, 129-133.	1.1	27
61	Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy. Journal of Human Genetics, 2018, 63, 989-996.	1.1	26
62	Novel Mutation in the α-Myosin Heavy Chain Gene Is Associated With Sick Sinus Syndrome. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 400-408.	2.1	25
63	Reference strand-mediated conformation analysis-based typing of multiple alleles in the rhesus macaque MHC class IMamu-A andMamu-B loci. Electrophoresis, 2007, 28, 918-924.	1.3	24
64	Clinical Characteristics of Patients with Coronavirus Disease (COVID-19): Preliminary Baseline Report of Japan COVID-19 Task Force, a Nationwide Consortium to Investigate Host Genetics of COVID-19. International Journal of Infectious Diseases, 2021, 113, 74-81.	1.5	24
65	Genetic Screening and Double Mutation in Japanese Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2011, 75, 2654-2659.	0.7	23
66	Biphasic CD8 ⁺ T-Cell Defense in Simian Immunodeficiency Virus Control by Acute-Phase Passive Neutralizing Antibody Immunization. Journal of Virology, 2016, 90, 6276-6290.	1.5	23
67	DNA typing of HLA class II genes in Japanese patients with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 1995, 27, 2385-2392.	0.9	20
68	Mutational Analysis of Fukutin Gene in Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy. Circulation Journal, 2009, 73, 158-161.	0.7	20
69	Improvement of Left Ventricular Dysfunction and of Survival Prognosis of Dilated Cardiomyopathy by Administration of Calcium Sensitizer SCH00013 in a Mouse Model. Journal of the American College of Cardiology, 2010, 55, 1503-1505.	1.2	20
70	Comprehensive analysis of HLA genes in Takayasu arteritis in Japan. International Journal of Cardiology, 1996, 54, S65-S73.	0.8	18
71	HLA class II DNA typing in Buerger's Disease. International Journal of Cardiology, 1996, 54, S197-S202.	0.8	18
72	Sequence analysis of three novel DRw14-DRB1 alleles. Immunogenetics, 1992, 36, 130-133.	1.2	17

#	Article	IF	CITATIONS
73	Megakaryoblastic leukemia factor-1 gene in the susceptibility to coronary artery disease. Human Genetics, 2009, 126, 539-547.	1.8	17
74	Dilated cardiomyopathy-linked heat shock protein family D member 1 mutations cause up-regulation of reactive oxygen species and autophagy through mitochondrial dysfunction. Cardiovascular Research, 2021, 117, 1118-1131.	1.8	17
75	Successful Outcome in a Pregnant Woman with Isolated Noncompaction of the Left Ventricular Myocardium. Internal Medicine, 2007, 46, 285-289.	0.3	16
76	Induction of expression of MHC-class-II antigen on human thyroid carcinoma by wild-type p53. , 1998, 75, 391-395.		15
77	Replication studies for the association of PSMA6 polymorphism with coronary artery disease in East Asian populations. Journal of Human Genetics, 2009, 54, 248-251.	1.1	15
78	Longâ€Term Outcome of 4 Korean Families With Hypertrophic Cardiomyopathy Caused by 4 Different Mutations. Clinical Cardiology, 2010, 33, 430-438.	0.7	15
79	Validation of eight genetic risk factors in East Asian populations replicated the association of BRAP with coronary artery disease. Journal of Human Genetics, 2009, 54, 642-646.	1.1	14
80	Broadening of Virus-Specific CD8+ T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers. PLoS Pathogens, 2015, 11, e1005247.	2.1	13
81	Genetic Analysis of Dilated Cardiomyopathy. HLA and immunoglobulin genes may confer susceptibility Japanese Circulation Journal, 1992, 56, 1054-1061.	1.0	12
82	Restricted expression of transgenic HLA-DRA gene in thymic epithelial cells and its role in acquisition of T cell tolerance to self-superantigens and processed DRα-derived peptide. European Journal of Immunology, 1993, 23, 1678-1686.	1.6	11
83	Determination of a major histocompatibility complex class I restricting simian immunodeficiency virus Gag241–249 epitope. Aids, 2008, 22, 993-994.	1.0	11
84	A frameshift deletion mutation in the cardiac myosin-binding protein C gene associated with dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy. Journal of Cardiology, 2010, 56, 189-196.	0.8	11
85	Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations. Journal of Human Genetics, 2015, 60, 641-645.	1.1	11
86	Efficacy of bepridil to prevent ventricular fibrillation in severe form of early repolarization syndrome. International Journal of Cardiology, 2014, 172, 519-522.	0.8	10
87	Perturbation of the titin/MURF1 signaling complex is associated with hypertrophic cardiomyopathy in a fish model and in human patients. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	10
88	Overexpression of heart-specific small subunit of myosin light chain phosphatase results in heart failure and conduction disturbance. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1192-H1202.	1.5	9
89	High precursor frequency of human T cells reactive to HLA-DQ molecules expressed on mouse L cell transfectants. European Journal of Immunology, 1991, 21, 2341-2347.	1.6	8
90	Identification of Donor-Derived Cells in Organ Transplants by in Vitro Amplification of Y-Chromosome Gene Using Polymerase Chain Reaction. Cell Transplantation, 1994, 3, 27-28.	1.2	8

#	Article	IF	CITATIONS
91	Gene Abnormalities in Medical Diseases. Molecular Genetics of Hypertrophic Cardiomyopathy in Japan Internal Medicine, 1997, 36, 152-154.	0.3	8
92	17-Year Follow-up Study of a Patient With Obstructive Hypertrophic Cardiomyopathy With a Deletion Mutation in the Cardiac Myosin Binding Protein C Gene. Circulation Journal, 2004, 68, 174-177.	0.7	8
93	Vaccine-based, long-term, stable control of simian/human immunodeficiency virus 89.6PD replication in rhesus macaques. Journal of General Virology, 2007, 88, 652-659.	1.3	7
94	Validation of the association between AGTRL1 polymorphism and coronary artery disease in the Japanese and Korean populations. Journal of Human Genetics, 2009, 54, 554-556.	1.1	7
95	ULBP4/RAET1E is highly polymorphic in the Old World monkey. Immunogenetics, 2011, 63, 501-509.	1.2	7
96	Dilated Phase of Hypertrophic Cardiomyopathy Caused by Two Different Sarcomere Mutations, Treated with Surgical Left Ventricular Reconstruction and Cardiac Resynchronization Therapy with a Defibrillator. Internal Medicine, 2012, 51, 2559-2564.	0.3	7
97	A novel de novo mutation of \hat{l}^2 -cardiac myosin heavy chain gene found in a twelve-year-old boy with hypertrophic cardiomyopathy. Journal of Genetics, 2014, 93, 557-560.	0.4	7
98	U-shaped association between abnormal serum uric acid levels and COVID-19 severity: reports from the Japan COVID-19 Task Force. International Journal of Infectious Diseases, 2022, 122, 747-754.	1.5	7
99	In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts. PLoS Pathogens, 2017, 13, e1006638.	2.1	6
100	CELL POSITION-DEPENDENT RECIPROCAL FEEDBACK REGULATION OF TYPE I COLLAGEN GENE EXPRESSION IN CULTURED HUMAN SKIN FIBROBLASTS. Cell Biology International, 1998, 22, 185-191.	1.4	5
101	Identification of SIV Nef CD8+ T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model. Biochemical and Biophysical Research Communications, 2014, 450, 942-947.	1.0	5
102	Diversity of MHC class I alleles in Spheniscus humboldti. Immunogenetics, 2017, 69, 113-124.	1.2	5
103	Clinical Expression in Patients With Hypertrophic Cardiomyopathy Caused by Cardiac Myosin-Binding Protein C Gene Mutation. Circulation, 1999, 100, 446-449.	1.6	5
104	HLA-B35 and MICA-A5 synergistically enhanced the susceptibility to Chagas heart disease. Major Histocompatibility Complex, 2000, 7, 63-70.	0.2	4
105	Departure from the Hardy–Weinberg equilibrium. Gene, 2014, 537, 357.	1.0	4
106	Familial hypertrophic obstructive cardiomyopathy with the GLA E66Q mutation and zebra body. BMC Cardiovascular Disorders, 2016, 16, 83.	0.7	4
107	Determination of a T cell receptor of potent CD8+ T cells against simian immunodeficiency virus infection in Burmese rhesus macaques. Biochemical and Biophysical Research Communications, 2020, 521, 894-899.	1.0	4
108	DNA CONFORMATION POLYMORPHISM ANALYSIS OF DR52 ASSOCIATED HLA-DR ANTIGENS BY POLYMERASE CHAIN REACTION: A SIMPLE, ECONOMICAL AND RAPID EXAMINATION FOR HLA MATCHING IN TRANSPLANTATION. Japanese Journal of Medical Science and Biology, 1993, 46, 165-181.	0.4	4

#	Article	IF	CITATIONS
109	Lifelong Clinical Impact of the Presence of Sarcomere Gene Mutation in Japanese Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2020, 84, 1846-1853.	0.7	4
110	HLA-linked susceptibility and resistance to Buergers disease in Japanese. Major Histocompatibility Complex, 1999, 5, 150-155.	0.2	3
111	Complex divergence at a microsatellite marker C1_2_5 in the lineage of HLA-Cw/-B haplotype. Journal of Human Genetics, 2009, 54, 224-229.	1.1	3
112	Does a Gene Polymorphism Predisposing to an Intermediate Phenotype Predict the Risk of Disease?. Circulation Journal, 2009, 73, 1016-1017.	0.7	3
113	Association of lymph-node antigens with lower Gag-specific central-memory and higher Env-specific effector-memory CD8+ T-cell frequencies in a macaque AIDS model. Scientific Reports, 2016, 6, 30153.	1.6	3
114	A case report: Twin sisters with restrictive cardiomyopathy associated with rare mutations in the cardiac troponin I gene. Journal of Cardiology Cases, 2021, 23, 154-157.	0.2	3
115	CD8 T Cells Show Protection against Highly Pathogenic Simian Immunodeficiency Virus (SIV) after Vaccination with SIV Gene-Expressing BCG Prime and Vaccinia Virus/Sendai Virus Vector Boosts. Journal of Virology, 2021, 95, .	1.5	3
116	A Validation Study of the Mayo Clinic Phenotype-Based Genetic Test Prediction Score for Japanese Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2021, 85, 669-674.	0.7	3
117	Histopathological changes of myocytes in restrictive cardiomyopathy. Medical Molecular Morphology, 2021, 54, 289-295.	0.4	3
118	Pathogenic variant of RBM20 in a multiplex family with hypertrophic cardiomyopathy. Human Genome Variation, 2022, 9, 6.	0.4	3
119	Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Chana. PLoS ONE, 2022, 17, e0269390.	1.1	2
120	Susceptibility to Vasculitis of Unknown Etiology in association with Genome Diversity in Genes for Immunity and Inflammation. Major Histocompatibility Complex, 2010, 17, 185-196.	0.2	1
121	Possible involvement of compliment C1q in the prozone-like phenomena found in the detection system of anti-HLA antibodies by HLA antigen-conjugated fluorescence beads. Major Histocompatibility Complex, 2012, 19, 33-41.	0.2	1
122	Divergence and diversity of ULBP2 genes in rhesus and cynomolgus macaques. Immunogenetics, 2014, 66, 161-170.	1.2	1
123	Molecular Evolutionary Analysis of Seven Species of Penguins (Order: Sphenisciformes) in MHC Class I Gene. Major Histocompatibility Complex, 2015, 22, 156-163.	0.2	1
124	Hypertrophic Cardiomyopathy Accompanied by Spinocerebellar Atrophy With a Novel Mutation in Troponin I Gene. International Heart Journal, 2016, 57, 507-510.	0.5	1
125	Diversity of <i>ULBP5</i> in Old-World monkeys (Cercopithecidae) and divergence of the <i>ULBP</i> gene family in primates. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 441-453.	1.6	1
126	A haplotype of Toll-like receptor 1 is associated with resistance to Buerger disease in Japanese. Major Histocompatibility Complex, 2019, 26, 189-194.	0.2	1

#	Article	IF	CITATIONS
127	The Involvement of HLA in Leprosy in Southern China Nishinihon Journal of Dermatology, 1998, 60, 506-509.	0.0	1
128	Polymorphism of the heat-shock protein gene HSP70-2 in ulcerative colitis. Major Histocompatibility Complex, 2000, 7, 2-6.	0.2	0
129	Molecular Genetic Aspects of Hypertrophic Cardiomyopathy in the Oriental. Progress in Experimental Cardiology, 2000, , 333-343.	0.0	0
130	Analysis of HLA-B polymorphism in insulin dependent diabetes mellitus in Japanese Major Histocompatibility Complex, 2003, 9, 163-169.	0.2	0
131	Somatic mutations leading to incomplete extinction of HLA class I were associated with replication error phenotype-positive colorectal carcinoma. Major Histocompatibility Complex, 2007, 13, 187-197.	0.2	0
132	Comments on difficult questions in the JSHI certification paper test. Major Histocompatibility Complex, 2017, 24, 101-122.	0.2	0
133	Barth syndrome associated with triple mutation. Pediatrics International, 2018, 60, 385-387.	0.2	0
134	Non-human MHC genotyping methods using next generation sequencing. Major Histocompatibility Complex, 2019, 26, 115-123.	0.2	0
135	KCNQ1 MUTATION CAUSING DOMINANT-NEGATIVE SUPPRESSION DUE TO DEFECTIVE CHANNEL TRAFFICKING UNDERLIES CARDIAC ARREST IN A PATIENT WITH LONG QT SYNDROME. , 2005, , .		0
136	lκBL mapped within the HLA region is a novel regulator of alternative splicing involved in the pathogenesis of immune-related diseases. Major Histocompatibility Complex, 2013, 20, 191-197.	0.2	0
137	Diversity of MHC class I genes in rhesus macaques and cynomolgus macaques (crab-eating monkeys). Major Histocompatibility Complex, 2013, 20, 35-44.	0.2	0
138	HLA-A AND -B GENOTYPING IN LIVING RELATED ONE HAPLOIDENTICAL KIDNEY TRANSPLANTATION. Japanese Journal of Medical Science and Biology, 1996, 49, 187-200.	0.4	0
139	Prognostic significance of ventricular and supraventricular arrhythmias in hypertrophic cardiomyopathy Japanese Journal of Electrocardiology, 1999, 19, 231-238.	0.0	0
140	Comments on difficult questions in the JSHI certification paper test 2017. Major Histocompatibility Complex, 2018, 25, 92-103.	0.2	0
141	Genome structure of MHC Class II β gene from Humboldt penguin (<i>Spheniscus humboldti</i>). Major Histocompatibility Complex, 2019, 26, 195-203.	0.2	0
142	Comments on difficult questions in the JSHI certification paper test 2018. Major Histocompatibility Complex, 2019, 26, 84-94.	0.2	0
143	MRTF-A regulates proliferation and survival properties of pro-atherogenic macrophages. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 3-0-093.	0.0	0