Yue Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9801036/publications.pdf Version: 2024-02-01

		759233	1125743	
13	1,334	12	13	
papers	citations	h-index	g-index	
13	13	13	812	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue. ACS Applied Materials & Interfaces, 2017, 9, 5660-5668.	8.0	300
2	Multifunctional Bulk Hybrid Foam for Infrared Stealth, Thermal Insulation, and Microwave Absorption. ACS Applied Materials & amp; Interfaces, 2020, 12, 28727-28737.	8.0	209
3	Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A, 2020, 8, 24368-24387.	10.3	145
4	A Novel Strategy in Electromagnetic Wave Absorbing and Shielding Materials Design: Multiâ€Responsive Field Effect. Small Science, 2022, 2, 2100077.	9.9	126
5	Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chemistry, 2022, 24, 5280-5290.	9.0	107
6	Multifunctional Integrated Transparent Film for Efficient Electromagnetic Protection. Nano-Micro Letters, 2022, 14, 65.	27.0	105
7	Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon, 2021, 183, 515-524.	10.3	98
8	A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. Journal of Colloid and Interface Science, 2022, 605, 193-203.	9.4	79
9	The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Research, 2022, 15, 7731-7741.	10.4	65
10	<i>In situ</i> regulating aspect ratio of bamboo-like CNTs <i>via</i> Co _x Ni _{1â^²x} -catalyzed growth to pursue superior microwave attenuation in X-band. Inorganic Chemistry Frontiers, 2019, 6, 309-316.	6.0	32
11	Lotus leaf-inspired and multifunctional Janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Composites Part B: Engineering, 2022, 242, 110110.	12.0	32
12	Broadband absorption of macro pyramid structure based flame retardant absorbers. Journal of Materials Science and Technology, 2022, 128, 228-238.	10.7	28
13	The enhanced microwave broadband absorbing ability of carbon microspheres via electromagnetic simulating honeycomb design. Journal of Materials Science: Materials in Electronics, 2021, 32, 25809-25819.	2.2	8