Antoni Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9800856/publications.pdf

Version: 2024-02-01

ANTONI CIL

#	Article	IF	CITATIONS
1	Bayesian optimization for effective thermal conductivity measurement of thermal energy storage: An experimental and numerical approach. Journal of Energy Storage, 2022, 52, 104795.	3.9	6
2	Performance enhancement of horizontal extension and thermal energy storage to an abandoned exploitation well and satellite LNG station integrated ORC system. Applied Thermal Engineering, 2022, 214, 118736.	3.0	10
3	A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments. Applied Energy, 2021, 288, 116555.	5.1	72
4	Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology with Material Selection, Storage Performance Evaluation, and Cost Minimization. Applied Sciences (Switzerland), 2021, 11, 4180.	1.3	10
5	Dispatchable solar power using molten salt directly irradiated from above. Solar Energy, 2021, 220, 217-229.	2.9	15
6	Concentrating Solar Power (CSP)—Thermal Energy Storage (TES) Advanced Concept Development and Demonstrations. Current Sustainable/Renewable Energy Reports, 2020, 7, 17-27.	1.2	8
7	Experimental analysis of the effective thermal conductivity enhancement of PCM using finned tubes in high temperature bulk tanks. Applied Thermal Engineering, 2018, 142, 736-744.	3.0	62
8	Zinc-rich eutectic alloys for high energy density latent heat storage applications. Journal of Alloys and Compounds, 2017, 705, 714-721.	2.8	36
9	CSPonD demonstrative project: Start-up process of a 25 kW prototype. AIP Conference Proceedings, 2017, , .	0.3	9
10	Optical property characterization of molten salt mixtures for thermal modeling of volumetrically absorbing solar receiver applications. AIP Conference Proceedings, 2017, , .	0.3	5
11	Industrial waste materials and by-products as thermal energy storage (TES) materials: A review. AIP Conference Proceedings, 2016, , .	0.3	4
12	Concentrated solar power on demand demonstration: Construction and operation of a 25 kW prototype. AIP Conference Proceedings, 2016, , .	0.3	9
13	Temperature distribution and heat losses in molten salts tanks for CSP plants. Solar Energy, 2016, 135, 518-526.	2.9	39
14	Experimental investigation of Mg-Zn-Al metal alloys for latent heat storage application. Journal of Alloys and Compounds, 2016, 685, 724-732.	2.8	25
15	Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renewable and Sustainable Energy Reviews, 2016, 59, 763-783.	8.2	109
16	Experiments on a Lab Scale TES Unit using Eutectic Metal Alloy as PCM. Energy Procedia, 2015, 69, 769-778.	1.8	21
17	Parametric and Thermal Management Optimization of a Steel Slag Based Packed Bed Heat Storage. , 2015, , .		0
18	Preliminary Optical, Thermal and Structural Design of a 100 kWth CSPonD Beam-down On-sun Demonstration Plant. Energy Procedia, 2015, 75, 2163-2168.	1.8	28

ANTONI GIL

#	Article	IF	CITATIONS
19	Design of a 100 kW Concentrated Solar Power on Demand Volumetric Receiver With Integral Thermal Energy Storage Prototype. , 2015, , .		5
20	New Thermal Energy Storage Materials From Industrial Wastes: Compatibility of Steel Slag With the Most Common Heat Transfer Fluids. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.1	4
21	Mg-Zn-Al Eutectic Alloys as Phase Change Material for Latent Heat Thermal Energy Storage. Energy Procedia, 2015, 69, 1006-1013.	1.8	50
22	Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material. Energy, 2015, 89, 601-609.	4.5	108
23	Thermo-physical Properties of a Steel-making by-product to be used as Thermal Energy Storage Material in a Packed-bed System. Energy Procedia, 2015, 69, 968-977.	1.8	27
24	New Thermal Energy Storage Materials From Industrial Wastes: Compatibility of Steel Slags With the Most Common Heat Transfer Fluids. , 2014, , .		1
25	Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES). Applied Energy, 2014, 113, 1261-1268.	5.1	84
26	Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. International Journal of Refrigeration, 2014, 39, 95-103.	1.8	71
27	Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Applied Energy, 2013, 111, 1107-1113.	5.1	62
28	Effect of d-mannitol polymorphism in its thermal energy storage capacity when it is used as PCM. Solar Energy, 2013, 94, 344-351.	2.9	62
29	Material selection and testing for thermal energy storage in solar cooling. Renewable Energy, 2013, 57, 366-371.	4.3	69
30	Experimental analysis of the effectiveness of a high temperature thermal storage tank for solar cooling applications. Applied Thermal Engineering, 2013, 54, 521-527.	3.0	51
31	Thermal Energy Storage Implementation Using Phase Change Materials for Solar Cooling and Refrigeration Applications. Energy Procedia, 2012, 30, 947-956.	1.8	43
32	Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renewable Energy, 2012, 44, 166-173.	4.3	134
33	Review of Solar Thermal Storage Techniques and Associated Heat Transfer Technologies. Proceedings of the IEEE, 2012, 100, 525-538.	16.4	70
34	Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Applied Energy, 2011, 88, 2764-2774.	5.1	154
35	Selection and Characterization of Recycled Materials for Sensible Thermal Energy Storage. , 2011, , .		1
36	State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 2010, 14, 31-55.	8.2	1,379

#	Article	IF	CITATIONS
37	State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies. Renewable and Sustainable Energy Reviews, 2010, 14, 56-72.	8.2	553