List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/980080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudorabies virus UL16 protein influences the inhibition of LRPPRC for the viral proliferation. Veterinary Microbiology, 2022, 265, 109327.	0.8	1
2	Nucleolin interacts with the rabbit hemorrhagic disease virus replicase RdRp, nonstructural proteins p16 and p23, playing a role in virus replication. Virologica Sinica, 2022, 37, 48-59.	1.2	2
3	Long-Term Expansion of Porcine Intestinal Organoids Serves as an in vitro Model for Swine Enteric Coronavirus Infection. Frontiers in Microbiology, 2022, 13, 865336.	1.5	7
4	Host Zinc-finger CCHC-type containing protein 3 inhibits pseudorabies virus proliferation by regulating type I interferon signaling. Gene, 2022, 827, 146480.	1.0	6
5	2AB protein of Senecavirus A antagonizes selective autophagy and type I interferon production by degrading LC3 and MARCHF8. Autophagy, 2022, 18, 1969-1981.	4.3	22
6	Virome in the cloaca of wild and breeding birds revealed a diversity of significant viruses. Microbiome, 2022, 10, 60.	4.9	32
7	cGAS Restricts PRRSV Replication by Sensing the mtDNA to Increase the cGAMP Activity. Frontiers in Immunology, 2022, 13, 887054.	2.2	6
8	TARDBP Inhibits Porcine Epidemic Diarrhea Virus Replication through Degrading Viral Nucleocapsid Protein and Activating Type I Interferon Signaling. Journal of Virology, 2022, 96, e0007022.	1.5	10
9	A rescued NADC30-like virus by reverse genetic manipulation exhibits moderate virulence and a promising application perspective. Virus Research, 2022, 316, 198801.	1.1	2
10	Nuclear ribonucleoprotein RALY targets virus nucleocapsid protein and induces autophagy to restrict porcine epidemic diarrhea virus replication. Journal of Biological Chemistry, 2022, 298, 102190.	1.6	6
11	FUBP3 Degrades the Porcine Epidemic Diarrhea Virus Nucleocapsid Protein and Induces the Production of Type I Interferon. Journal of Virology, 2022, 96, .	1.5	12
12	Host Interferon-Stimulated Gene 20 Inhibits Pseudorabies Virus Proliferation. Virologica Sinica, 2021, 36, 1027-1035.	1.2	12
13	Inhibition of the DNA-Sensing pathway by pseudorabies virus UL24 protein via degradation of interferon regulatory factor 7. Veterinary Microbiology, 2021, 255, 109023.	0.8	11
14	A Virulent PEDV Strain FJzz1 with Genomic Mutations and Deletions at the High Passage Level Was Attenuated in Piglets via Serial Passage In Vitro. Virologica Sinica, 2021, 36, 1052-1065.	1.2	13
15	TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein. Archives of Virology, 2021, 166, 1903-1911.	0.9	17
16	Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Research, 2021, 295, 198276.	1.1	12
17	Pseudorabies virus pUL16 assists the nuclear import of VP26 through protein-protein interaction. Veterinary Microbiology, 2021, 257, 109080.	0.8	2
18	EGR1 Suppresses Porcine Epidemic Diarrhea Virus Replication by Regulating IRAV To Degrade Viral Nucleocapsid Protein. Journal of Virology, 2021, 95, e0064521.	1.5	36

#	Article	IF	CITATIONS
19	Immune efficacy of a candidate porcine reproductive and respiratory syndrome vaccine rHN-NP49 administered by a Needle-free intradermal delivery system in comparison with intramuscular injection. Vaccine, 2021, 39, 5557-5562.	1.7	3
20	Tk-deleted pseudorabies virus retains high pathogenicity in rats. Journal of Veterinary Research (Poland), 2021, 65, 401-405.	0.3	6
21	The Novel PRRSV Strain HBap4-2018 with a Unique Recombinant Pattern Is Highly Pathogenic to Piglets. Virologica Sinica, 2021, 36, 1611-1625.	1.2	28
22	PABPC4 Broadly Inhibits Coronavirus Replication by Degrading Nucleocapsid Protein through Selective Autophagy. Microbiology Spectrum, 2021, 9, e0090821.	1.2	26
23	Identification of one novel epitope targeting p54 protein of African swine fever virus using monoclonal antibody and development of a capable ELISA. Research in Veterinary Science, 2021, 141, 19-25.	0.9	18
24	Recombinant Bivalent Live Vectored Vaccine Against Classical Swine Fever and HP-PRRS Revealed Adequate Heterogeneous Protection Against NADC30-Like Strain. Frontiers in Microbiology, 2021, 12, 822749.	1.5	4
25	Phylogenetics, Genomic Recombination, and NSP2 Polymorphic Patterns of Porcine Reproductive and Respiratory Syndrome Virus in China and the United States in 2014–2018. Journal of Virology, 2020, 94, .	1.5	69
26	BST2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy. Autophagy, 2020, 16, 1737-1752.	4.3	74
27	Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Research, 2020, 173, 104652.	1.9	27
28	The role of PA-X C-terminal 20 residues of classical swine influenza virus in its replication and pathogenicity. Veterinary Microbiology, 2020, 251, 108916.	0.8	9
29	Immune duration of a recombinant PRRSV vaccine expressing E2 of CSFV. Vaccine, 2020, 38, 7956-7962.	1.7	11
30	Evaluation of immune efficacy of recombinant PRRSV vectored vaccine rPRRSV-E2 in piglets with maternal derived antibodies. Veterinary Microbiology, 2020, 248, 108833.	0.8	11
31	Characterization of Nucleocytoplasmic Shuttling of Pseudorabies Virus Protein UL46. Frontiers in Veterinary Science, 2020, 7, 484.	0.9	5
32	Genetic Diversity of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) From 1996 to 2017 in China. Frontiers in Microbiology, 2020, 11, 618.	1.5	55
33	Porcine Reproductive and Respiratory Syndrome Virus Antagonizes PCSK9's Antiviral Effect via Nsp11 Endoribonuclease Activity. Viruses, 2020, 12, 655.	1.5	6
34	Proteasomal degradation of nonstructural protein 12 by RNF114 suppresses porcine reproductive and respiratory syndrome virus replication. Veterinary Microbiology, 2020, 246, 108746.	0.8	9
35	Identification of a novel B-cell epitope in the spike protein of porcine epidemic diarrhea virus. Virology Journal, 2020, 17, 46.	1.4	15
36	Protective efficacy of a bivalent inactivated reassortant H1N1 influenza virus vaccine against European avian-like and classical swine influenza H1N1 viruses in mice. Veterinary Microbiology, 2020, 246, 108724.	0.8	1

#	Article	IF	CITATIONS
37	Restriction of porcine reproductive and respiratory syndrome virus replication by galectin-1. Veterinary Microbiology, 2019, 235, 310-318.	0.8	8
38	Identification of two novel epitopes targeting glycoprotein E of pseudorabies virus using monoclonal antibodies. Biochemical and Biophysical Research Communications, 2019, 519, 330-336.	1.0	9
39	Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011–2017. Infection, Genetics and Evolution, 2019, 69, 153-165.	1.0	42
40	Nucleocapsid protein of porcine reproductive and respiratory syndrome virus antagonizes the antiviral activity of TRIM25 by interfering with TRIM25-mediated RIG-I ubiquitination. Veterinary Microbiology, 2019, 233, 140-146.	0.8	44
41	Characterization of newly emerged NADC30-like strains of porcine reproductive and respiratory syndrome virus in China. Archives of Virology, 2019, 164, 401-411.	0.9	36
42	Functional analysis of the UL24 protein of suid herpesvirus 1. Virus Genes, 2019, 55, 76-86.	0.7	6
43	Two Residues in NSP9 Contribute to the Enhanced Replication and Pathogenicity of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2018, 92, .	1.5	40
44	Development of Monoclonal Antibodies Specifically Recognizing the Nonstructural Protein 12 of Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 73-77.	0.8	2
45	The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice. Research in Veterinary Science, 2018, 117, 54-56.	0.9	1
46	Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains. Virology Journal, 2018, 15, 195.	1.4	7
47	MOV10 inhibits replication of porcine reproductive and respiratory syndrome virus by retaining viral nucleocapsid protein in the cytoplasm of Marc-145 cells. Biochemical and Biophysical Research Communications, 2018, 504, 157-163.	1.0	19
48	Acidity/Alkalinity of Japanese Encephalitis Virus E Protein Residue 138 Alters Neurovirulence in Mice. Journal of Virology, 2018, 92, .	1.5	16
49	Utilizing host endogenous microRNAs to negatively regulate the replication of porcine reproductive and respiratory syndrome virus in MARC-145 cells. PLoS ONE, 2018, 13, e0200029.	1.1	3
50	Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Veterinary Research, 2018, 14, 204.	0.7	22
51	Generation and characterization of UL41 null pseudorabies virus variant in vitro and in vivo. Virology Journal, 2018, 15, 119.	1.4	10
52	Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European Avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018, 222, 75-84.	0.8	5
53	The emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus with additional 120aa deletion in Nsp2 region in Jiangxi, China. Transboundary and Emerging Diseases, 2018, 65, 1740-1748.	1.3	17
54	Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine, 2018, 36, 3269-3277.	1.7	31

#	Article	IF	CITATIONS
55	Construction of an infectious bacterial artificial chromosome clone of a pseudorabies virus variant: Reconstituted virus exhibited wild-type properties in vitro and in vivo. Journal of Virological Methods, 2018, 259, 106-115.	1.0	9
56	Galectin-3 inhibits replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp12 in vitro. Virus Research, 2018, 253, 87-91.	1.1	9
57	A high-temperature passaging attenuated Pseudorabies vaccine protects piglets completely against emerging PRV variant. Research in Veterinary Science, 2017, 112, 109-115.	0.9	13
58	PA-X protein decreases replication and pathogenicity of swine influenza virus in cultured cells and mouse models. Veterinary Microbiology, 2017, 205, 66-70.	0.8	18
59	Labelâ€Free Quantitative Proteomic Analysis of Differentially Expressed Membrane Proteins of Pulmonary Alveolar Macrophages Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Its Attenuated Strain. Proteomics, 2017, 17, 1700101.	1.3	8
60	Variations in glycoprotein B contribute to immunogenic difference between PRV variant JS-2012 and Bartha-K61. Veterinary Microbiology, 2017, 208, 97-105.	0.8	42
61	Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996–2016. Veterinary Microbiology, 2017, 208, 164-172.	0.8	59
62	A simple method for developing an infectious cDNA clone of Japanese encephalitis virus. Virus Genes, 2017, 53, 4-14.	0.7	6
63	ORF1a of highly pathogenic PRRS attenuated vaccine virus plays a key role in neutralizing antibody induction in piglets and virus neutralization in vitro. Virology Journal, 2017, 14, 159.	1.4	12
64	A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of Veterinary Science, 2016, 17, 71.	0.5	5
65	Suppression of Virulent Porcine Epidemic Diarrhea Virus Proliferation by the PI3K/Akt/GSK-3α/β Pathway. PLoS ONE, 2016, 11, e0161508.	1.1	33
66	Interferon regulatory factor 3 is a key regulation factor for inducing the expression of SAMHD1 in antiviral innate immunity. Scientific Reports, 2016, 6, 29665.	1.6	29
67	The Identification and Characterization of Two Novel Epitopes on the Nucleocapsid Protein of the Porcine Epidemic Diarrhea Virus. Scientific Reports, 2016, 6, 39010.	1.6	32
68	Monoclonal Antibody to Bone Marrow Stromal Cell Antigen 2 Protein of Swine. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 172-176.	0.8	6
69	Recombinant porcine reproductive and respiratory syndrome virus expressing luciferase genes provide a new indication of viral propagation in both permissive and target cells. Research in Veterinary Science, 2016, 107, 132-140.	0.9	7
70	Development and application of a TaqMan-MGB real-time RT-PCR assay for the detection of porcine epidemic diarrhoea virus strains in China. Journal of Veterinary Research (Poland), 2016, 60, 127-133.	0.3	3
71	Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China. Veterinary Microbiology, 2016, 183, 85-91.	0.8	23
72	A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antiviral Research, 2016, 130, 110-117.	1.9	57

#	Article	IF	CITATIONS
73	Genomic analyses reveal that partial sequence of an earlier pseudorabies virus in China is originated from a Bartha-vaccine-like strain. Virology, 2016, 491, 56-63.	1.1	57
74	Identification and Analysis of Novel Viral and Host Dysregulated MicroRNAs in Variant Pseudorabies Virus-Infected PK15 Cells. PLoS ONE, 2016, 11, e0151546.	1.1	14
75	Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo. Scientific Reports, 2015, 5, 17010.	1.6	41
76	Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: Evidence for the existence of two major genotypes. Virology, 2015, 483, 32-43.	1.1	103
77	A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014. Infection, Genetics and Evolution, 2015, 34, 94-105.	1.0	38
78	Characterization of two novel porcine reproductive and respiratory syndrome virus isolates with deletions in the GP2 gene. Veterinary Microbiology, 2015, 176, 344-351.	0.8	12
79	The gene expression profile of porcine alveolar macrophages infected with a highly pathogenic porcine reproductive and respiratory syndrome virus indicates overstimulation of the innate immune system by the virus. Archives of Virology, 2015, 160, 649-662.	0.9	16
80	Monoclonal Antibody to N Protein of Porcine Epidemic Diarrhea Virus. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2015, 34, 51-54.	0.8	18
81	Characterization of three porcine reproductive and respiratory syndrome virus isolates from a single swine farm bearing strong homology to a vaccine strain. Veterinary Microbiology, 2015, 179, 242-249.	0.8	56
82	Complete Genome Sequence of Classical Swine Fever Virus Strain JSZL, Belonging to a New Subgenotype, 2.1d, Isolated in China in 2014. Genome Announcements, 2015, 3, .	0.8	5
83	Emergence of a Pseudorabies virus variant with increased virulence to piglets. Veterinary Microbiology, 2015, 181, 236-240.	0.8	104
84	Importation and Recombination Are Responsible for the Latest Emergence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in China. Journal of Virology, 2015, 89, 10712-10716.	1.5	186
85	Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Medical Genomics, 2015, 8, 52.	0.7	39
86	Cysteine residues of the porcine reproductive and respiratory syndrome virus ORF5a protein are not essential for virus viability. Virus Research, 2015, 197, 17-25.	1.1	5
87	Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Research, 2015, 195, 86-94.	1.1	71
88	Identification of Differentially Expressed Proteins in Porcine Alveolar Macrophages Infected with Virulent/Attenuated Strains of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2014, 9, e85767.	1.1	18
89	Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs. Archives of Virology, 2014, 159, 2957-2967.	0.9	7
90	Construction and in vitro evaluation of a recombinant live attenuated PRRSV expressing GM-CSF. Virology Journal, 2014, 11, 201.	1.4	14

#	Article	IF	CITATIONS
91	Development of Monoclonal Antibodies Specifically Recognizing the Endogenous Sterile Alpha Motif and HD Domain 1 Protein in Porcine Cell Lines. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 344-349.	0.8	4
92	Molecular cloning and characterizations of porcine SAMHD1 and its roles in replication of highly pathogenic porcine reproductive and respiratory syndrome virus. Developmental and Comparative Immunology, 2014, 47, 234-246.	1.0	18
93	Development of a live attenuated vaccine candidate against duck Tembusu viral disease. Virology, 2014, 450-451, 233-242.	1.1	47
94	Characterization of two newly emerged isolates of porcine reproductive and respiratory syndrome virus from Northeast China in 2013. Veterinary Microbiology, 2014, 171, 41-52.	0.8	39
95	Genetic manipulation of a transcription-regulating sequence of porcine reproductive and respiratory syndrome virus reveals key nucleotides determining its activity. Archives of Virology, 2014, 159, 1927-1940.	0.9	8
96	Identification of two dominant linear epitopes on the GP3 protein of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). Research in Veterinary Science, 2014, 97, 238-243.	0.9	9
97	Genomic characterization of a bovine viral diarrhea virus 1 isolate from swine. Archives of Virology, 2014, 159, 2513-2517.	0.9	16
98	Conserved nucleotides in the terminus of the 3′ UTR region are important for the replication and infectivity of porcine reproductive and respiratory syndrome virus. Archives of Virology, 2013, 158, 1719-1732.	0.9	6
99	High prevalence of torque teno sus virus in China and genetic diversity of the 5' non-coding region. Archives of Virology, 2013, 158, 1567-1573.	0.9	8
100	Control of the PI3K/Akt pathway by porcine reproductive and respiratory syndrome virus. Archives of Virology, 2013, 158, 1227-1234.	0.9	27
101	Development of a differentiable virus via a spontaneous deletion in the nsp2 region associated with cell adaptation of porcine reproductive and respiratory syndrome virus. Virus Research, 2013, 171, 150-160.	1.1	17
102	Replacement of the heterologous 5′ untranslated region allows preservation of the fully functional activities of type 2 porcine reproductive and respiratory syndrome virus. Virology, 2013, 439, 1-12.	1.1	10
103	Porcine reproductive and respiratory syndrome virus ORF5a protein is essential for virus viability. Virus Research, 2013, 171, 178-185.	1.1	31
104	Molecular characterization of Japanese encephalitis virus strains prevalent in Chinese swine herds. Journal of Veterinary Science, 2013, 14, 27.	0.5	13
105	Pseudorabies Virus Variant in Bartha-K61–Vaccinated Pigs, China, 2012. Emerging Infectious Diseases, 2013, 19, 1749-1755.	2.0	269
106	Disulfide Linkages Mediating Nucleocapsid Protein Dimerization Are Not Required for Porcine Arterivirus Infectivity. Journal of Virology, 2012, 86, 4670-4681.	1.5	11
107	Complete Genome Sequence of a Virulent Porcine Epidemic Diarrhea Virus Strain. Journal of Virology, 2012, 86, 13862-13862.	1.5	16
108	Arterivirus Minor Envelope Proteins Are a Major Determinant of Viral Tropism in Cell Culture. Journal of Virology, 2012, 86, 3701-3712.	1.5	78

#	Article	IF	CITATIONS
109	N-Linked Glycosylation of GP5 of Porcine Reproductive and Respiratory Syndrome Virus Is Critically Important for Virus Replication <i>In Vivo</i> . Journal of Virology, 2012, 86, 9941-9951.	1.5	60
110	Use of reverse genetics to develop a novel marker porcine reproductive and respiratory syndrome virus. Virus Genes, 2012, 45, 548-555.	0.7	3
111	Stable expression of foreign gene in nonessential region of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus: Applications for marker vaccine design. Veterinary Microbiology, 2012, 159, 1-10.	0.8	28
112	High prevalence of bovine viral diarrhea virus 1 in Chinese swine herds. Veterinary Microbiology, 2012, 159, 490-493.	0.8	65
113	Highly pathogenic porcine reproductive and respiratory syndrome virus GP5 B antigenic region is not a neutralizing antigenic region. Veterinary Microbiology, 2012, 159, 273-281.	0.8	25
114	Identification of nonessential regions of the nsp2 protein of an attenuated vaccine strain (HuN4-F112) of highly pathogenic porcine reproductive and respiratory syndrome virus for replication in marc-145 cell. Virology Journal, 2012, 9, 141.	1.4	15
115	Influence of N-linked glycosylation of minor proteins of porcine reproductive and respiratory syndrome virus on infectious virus recovery and receptor interaction. Virology, 2012, 429, 1-11.	1.1	25
116	Evolutionary Patterns of the Proviral gp90 V3 to V5 Regions of Equine Infectious Anemia Virus Associated with Immune Selection in Progressors and Nonprogressors. Agricultural Sciences in China, 2011, 10, 126-135.	0.6	0
117	Comparative genomic analysis of five pairs of virulent parental/attenuated vaccine strains of PRRSV. Veterinary Microbiology, 2011, 149, 104-112.	0.8	40
118	Genetic diversity of H9N2 influenza viruses from pigs in China: A potential threat to human health?. Veterinary Microbiology, 2011, 149, 254-261.	0.8	79
119	An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China. Virology, 2011, 417, 1-8.	1.1	198
120	Generation of an infectious clone of HuN4-F112, an attenuated live vaccine strain of porcine reproductive and respiratory syndrome virus. Virology Journal, 2011, 8, 410.	1.4	35
121	Development of a reverse transcription loop-mediated isothermal amplification assay for detection of <i>Porcine teschovirus</i> . Journal of Veterinary Diagnostic Investigation, 2011, 23, 516-518.	0.5	4
122	Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus, Asia. Emerging Infectious Diseases, 2011, 17, 1782-1784.	2.0	92
123	Characterization of the biochemical properties and identification of amino acids forming the catalytic center of 3C-like proteinase of porcine reproductive and respiratory syndrome virus. Biotechnology Letters, 2010, 32, 1905-1910.	1.1	8
124	Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies. Journal of Virological Methods, 2010, 163, 405-409.	1.0	34
125	Porcine reproductive and respiratory syndrome virus attachment is mediated by the N-terminal domain of the sialoadhesin receptor. Veterinary Microbiology, 2010, 143, 371-378.	0.8	27
126	Isolation of serotype 2 porcine teschovirus in China: Evidence of natural recombination. Veterinary Microbiology, 2010, 146, 138-143.	0.8	20

#	Article	IF	CITATIONS
127	Preparation and immunological effectiveness of a Swine influenza DNA vaccine encapsulated in PLGA microspheres. Journal of Microencapsulation, 2010, 27, 178-186.	1.2	16
128	Origin of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases, 2010, 16, 365-367.	2.0	91
129	Protective effect of glutathione S-transferase-fused mutant staphylococcal enterotoxin C against Staphylococcus aureus-induced bovine mastitis. Veterinary Immunology and Immunopathology, 2010, 135, 64-70.	0.5	10
130	Cloning and identification of porcine programmed death 1. Veterinary Immunology and Immunopathology, 2010, 136, 157-162.	0.5	10
131	Monoclonal antibodies and conserved antigenic epitopes in the C terminus of GP5 protein of the North American type porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2009, 138, 1-10.	0.8	27
132	An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS. Veterinary Microbiology, 2009, 138, 34-40.	0.8	119
133	Influenza A virus induces p53 accumulation in a biphasic pattern. Biochemical and Biophysical Research Communications, 2009, 382, 331-335.	1.0	41
134	Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Biochemical and Biophysical Research Communications, 2009, 386, 278-283.	1.0	38
135	Further evidence for infection of pigs with human-like H1N1 influenza viruses in China. Virus Research, 2009, 140, 85-90.	1.1	35
136	Identification of a virus-specific and conserved B-cell epitope on NS1 protein of Japanese encephalitis virus. Virus Research, 2009, 141, 90-95.	1.1	24
137	Genetic diversity of the ORF5 gene of porcine reproductive and respiratory syndrome virus isolates in China from 2006 to 2008. Virus Research, 2009, 144, 136-144.	1.1	41
138	Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Veterinary Microbiology, 2008, 131, 73-81.	0.8	156
139	Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Veterinary Microbiology, 2008, 131, 82-92.	0.8	75
140	Simultaneous detection of Classical swine fever virus and North American genotype Porcine reproductive and respiratory syndrome virus using a duplex real-time RT-PCR. Journal of Virological Methods, 2008, 151, 194-199.	1.0	21
141	Genetic Evolution of Swine Influenza A (H3N2) Viruses in China from 1970 to 2006. Journal of Clinical Microbiology, 2008, 46, 1067-1075.	1.8	61
142	Isolation and genetic analysis of human origin H1N1 and H3N2 influenza viruses from pigs in China. Biochemical and Biophysical Research Communications, 2007, 356, 91-96.	1.0	54
143	Highly Pathogenic Porcine Reproductive and Respiratory Syndrome, China. Emerging Infectious Diseases, 2007, 13, 1434-1436.	2.0	291
144	Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006: Coexistence of two NA-subgenotypes with great diversity. Veterinary Microbiology, 2007, 123, 43-52.	0.8	94

#	Article	IF	CITATIONS
145	A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge. Veterinary Immunology and Immunopathology, 2006, 111, 211-218.	0.5	35
146	Antigenic structure analysis of glycosylated protein 3 of porcine reproductive and respiratory syndrome virus. Virus Research, 2006, 118, 98-104.	1.1	40
147	Characterization of a highly pathogenic H5N1 influenza virus derived from bar-headed geese in China. Journal of General Virology, 2006, 87, 1823-1833.	1.3	89
148	Identification of a Conserved Epitope Cluster in the N Protein of Porcine Reproductive and Respiratory Syndrome Virus. Viral Immunology, 2006, 19, 383-390.	0.6	13
149	Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Veterinary Immunology and Immunopathology, 2005, 106, 309-319.	0.5	92
150	Immune responses of swine following DNA immunization with plasmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7, and porcine IL-2 and IFNÎ ³ . Veterinary Immunology and Immunopathology, 2004, 102, 291-298.	0.5	42
151	Serological and virologic surveillance of swine influenza in China from 2000 to 2003. International Congress Series, 2004, 1263, 754-757.	0.2	12