Andranik Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9799729/publications.pdf

Version: 2024-02-01

687363 996975 6,608 15 13 15 citations h-index g-index papers 16 16 16 8214 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. Science Advances, 2022, 8, eabi6672.	10.3	40
2	Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. IScience, 2021, 24, 102151.	4.1	202
3	Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC) derived sensory neurons. Neurobiology of Disease, 2021, 155, 105391.	4.4	31
4	Dataset for: Modeling chemotherapy induced neurotoxicity with human induced pluripotent stem cell (iPSC)-derived sensory neurons. Data in Brief, 2021, 38, 107320.	1.0	2
5	An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 276-287.	4.3	15
6	Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations. International Journal of Molecular Sciences, 2020, 21, 7944.	4.1	72
7	let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7. Cell Reports, 2019, 29, 3460-3471.e7.	6.4	64
8	Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Reports, 2018, 24, 2773-2783.e6.	6.4	311
9	Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Translational Psychiatry, 2017, 7, e1120-e1120.	4.8	167
10	Tumour ischaemia by interferon-Î ³ resembles physiological blood vessel regression. Nature, 2017, 545, 98-102.	27.8	199
11	Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Reports, 2015, 10, 170-177.	6.4	918
12	Insm1 cooperates with <scp>N</scp> eurod1 and <scp>F</scp> oxa2 to maintain mature pancreatic βâ€eell function. EMBO Journal, 2015, 34, 1417-1433.	7.8	77
13	Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular Cell, 2015, 58, 870-885.	9.7	1,974
14	circRNA Biogenesis Competes with Pre-mRNA Splicing. Molecular Cell, 2014, 56, 55-66.	9.7	2,490
15	Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development (Cambridge), 2013, 140, 4947-4958.	2.5	46