Chi-Chung Hui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/979900/publications.pdf

Version: 2024-02-01

		22153	22166
116	18,445	59	113
papers	citations	h-index	g-index
118	118	118	25690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436, 112-116.	27.8	2,264
2	<i>FTO</i> Obesity Variant Circuitry and Adipocyte Browning in Humans. New England Journal of Medicine, 2015, 373, 895-907.	27.0	1,105
3	Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 2014, 507, 371-375.	27.8	1,079
4	Hedgehog Signaling in Development and Cancer. Developmental Cell, 2008, 15, 801-812.	7.0	986
5	Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 2003, 33, 416-421.	21.4	902
6	Mutations in SUFU predispose to medulloblastoma. Nature Genetics, 2002, 31, 306-310.	21.4	722
7	A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 2004, 6, 1082-1093.	10.3	692
8	A mouse model of Greig cephalo–polysyndactyly syndrome: the extra–toesJ mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics, 1993, 3, 241-246.	21.4	669
9	Gli Proteins in Development and Disease. Annual Review of Cell and Developmental Biology, 2011, 27, 513-537.	9.4	603
10	Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nature Genetics, 1998, 20, 54-57.	21.4	525
11	Expression of Three Mouse Homologs of the Drosophila Segment Polarity Gene cubitus interruptus, Gli, Gli-2, and Gli-3, in Ectoderm- and Mesoderm-Derived Tissues Suggests Multiple Roles during Postimplantation Development. Developmental Biology, 1994, 162, 402-413.	2.0	439
12	Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment. Current Biology, 2005, 15, 1340-1351.	3.9	366
13	Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genetics, 2000, 24, 216-217.	21.4	365
14	Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate. Cell, 2010, 140, 148-160.	28.9	336
15	Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes and Development, 2009, 23, 1910-1928.	5.9	302
16	Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes and Development, 2003, 17, 282-294.	5.9	284
17	A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron, 2018, 100, 799-815.e7.	8.1	241
18	The Homeodomain Transcription Factor Irx5 Establishes the Mouse Cardiac Ventricular Repolarization Gradient. Cell, 2005, 123, 347-358.	28.9	233

#	Article	IF	CITATIONS
19	Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes and Development, 2006, 20, 1651-1666.	5.9	214
20	Anorectal Malformations Caused by Defects in Sonic Hedgehog Signaling. American Journal of Pathology, 2001, 159, 765-774.	3.8	211
21	Essential Role of Fkbp6 in Male Fertility and Homologous Chromosome Pairing in Meiosis. Science, 2003, 300, 1291-1295.	12.6	200
22	Ptch2, a second mouse Patched gene is co-expressed with Sonic hedgehog. Nature Genetics, 1998, 18, 104-106.	21.4	195
23	The Kinesin Protein Kif7 Is a Critical Regulator of Gli Transcription Factors in Mammalian Hedgehog Signaling. Science Signaling, 2009, 2, ra29.	3.6	188
24	Disruption at the <i>PTCHD1</i> Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability. Science Translational Medicine, 2010, 2, 49ra68.	12.4	178
25	Multipotent CD15+ Cancer Stem Cells in <i>Patched-1</i> A€"Deficient Mouse Medulloblastoma. Cancer Research, 2009, 69, 4682-4690.	0.9	166
26	GLI3-dependent transcriptional repression of <i>Gli1, Gli2 </i> and kidney patterning genes disrupts renal morphogenesis. Development (Cambridge), 2006, 133, 569-578.	2.5	163
27	Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nature Genetics, 2006, 38, 175-183.	21.4	156
28	Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nature Genetics, 1997, 16, 283-288.	21.4	150
29	Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research, 2017, 27, 1309-1326.	12.0	148
30	Rh Type B Glycoprotein Is a New Member of the Rh Superfamily and a Putative Ammonia Transporter in Mammals. Journal of Biological Chemistry, 2001, 276, 1424-1433.	3.4	142
31	Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation, 2005, 73, 397-405.	1.9	136
32	Characterization of Human RhCG and Mouse Rhcg as Novel Nonerythroid Rh Glycoprotein Homologues Predominantly Expressed in Kidney and Testis. Journal of Biological Chemistry, 2000, 275, 25641-25651.	3.4	134
33	Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development (Cambridge), 2005, 132, 345-357.	2.5	134
34	Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development (Cambridge), 2003, 130, 6233-6243.	2.5	133
35	Hedgehog signaling and congenital malformations. Clinical Genetics, 2004, 67, 193-208.	2.0	131
36	Murine models of VACTERL syndrome: Role of sonic hedgehog signaling pathway. Journal of Pediatric Surgery, 2001, 36, 381-384.	1.6	122

#	Article	IF	Citations
37	Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mechanisms of Development, 2003, 120, 1097-1111.	1.7	111
38	Suppressor of Fused Negatively Regulates \hat{l}^2 -Catenin Signaling. Journal of Biological Chemistry, 2001, 276, 40113-40119.	3.4	109
39	<i>Iroquois homeobox gene 3</i> establishes fast conduction in the cardiac His–Purkinje network. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13576-13581.	7.1	109
40	Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Developmental Biology, 2003, 259, 150-161.	2.0	104
41	Loss of the Mouse Ortholog of the Shwachman-Diamond Syndrome Gene (Sbds) Results in Early Embryonic Lethality. Molecular and Cellular Biology, 2006, 26, 6656-6663.	2.3	103
42	Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mechanisms of Development, 2000, 91, 317-321.	1.7	102
43	Shh Controls Epithelial Proliferation via Independent Pathways that Converge on N-Myc. Developmental Cell, 2005, 9, 293-303.	7.0	99
44	Formation of Proximal and Anterior Limb Skeleton Requires Early Function of Irx3 and Irx5 and Is Negatively Regulated by Shh Signaling. Developmental Cell, 2014, 29, 233-240.	7.0	95
45	The Gli2 Transcription Factor Is Required for Normal Mouse Mammary Gland Development. Developmental Biology, 2001, 238, 133-144.	2.0	91
46	The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Developmental Biology, 2005, 287, 48-60.	2.0	90
47	Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mechanisms of Development, 2005, 122, 1218-1233.	1.7	89
48	Murine homologs ofdeltexdefine a novel gene family involved in vertebrate Notch signaling and neurogenesis. International Journal of Developmental Neuroscience, 2001, 19, 21-35.	1.6	84
49	New mouse models of congenital anorectal malformations. Journal of Pediatric Surgery, 2000, 35, 227-231.	1.6	83
50	Twist Plays an Essential Role in FGF and SHH Signal Transduction during Mouse Limb Development. Developmental Biology, 2002, 248, 143-156.	2.0	79
51	Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene, 2004, 23, 4577-4583.	5.9	75
52	Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nature Communications, 2020, 11, 334.	12.8	73
53	Dissecting the oncogenic potential of Gli2: deletion of an NH(2)-terminal fragment alters skin tumor phenotype. Cancer Research, 2002, 62, 5308-16.	0.9	72
54	Overlapping and non-overlapping Ptch2 expression with Shh during mouse embryogenesis. Mechanisms of Development, 1998, 78, 81-84.	1.7	70

#	Article	IF	Citations
55	Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. Journal of Molecular Biology, 1990, 213, 651-670.	4.2	67
56	Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development (Cambridge), 2012, 139, 4007-4019.	2.5	66
57	Identification of ALK in Thinness. Cell, 2020, 181, 1246-1262.e22.	28.9	66
58	Mice with a Targeted Mutation of Patched2 Are Viable but Develop Alopecia and Epidermal Hyperplasia. Molecular and Cellular Biology, 2006, 26, 6609-6622.	2.3	64
59	GLI3 Repressor Controls Nephron Number via Regulation of Wnt11 and Ret in Ureteric Tip Cells. PLoS ONE, 2009, 4, e7313.	2.5	64
60	Hedgehog/Notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans. Journal of Clinical Investigation, 2011, 121, 3467-3478.	8.2	64
61	<i>lroquois</i> Homeodomain Transcription Factors in Heart Development and Function. Circulation Research, 2012, 110, 1513-1524.	4.5	63
62	Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development (Cambridge), 2012, 139, 4152-4161.	2.5	61
63	Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling. Molecular and Cellular Biology, 2017, 37, .	2.3	53
64	Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. Journal of Clinical Investigation, 1999, 103, 1211-1219.	8.2	51
65	Kif7 promotes hedgehog signaling in growth plate chondrocytes by restricting the inhibitory function of Sufu. Development (Cambridge), 2011, 138, 3791-3801.	2.5	50
66	The Iroquois Homeobox Gene Irx2 Is Not Essential for Normal Development of the Heart and Midbrain-Hindbrain Boundary in Mice. Molecular and Cellular Biology, 2003, 23, 8216-8225.	2.3	49
67	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
68	Cbl-3-Deficient Mice Exhibit Normal Epithelial Development. Molecular and Cellular Biology, 2003, 23, 7708-7718.	2.3	45
69	Gli2 is required for normal Shh signaling and oligodendrocyte development in the spinal cord. Molecular and Cellular Neurosciences, 2003, 23, 440-450.	2.2	44
70	The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling. Science Signaling, 2014, 7, ra117.	3.6	44
71	A Switch from Low to High Shh Activity Regulates Establishment of Limb Progenitors and Signaling Centers. Developmental Cell, 2014, 29, 241-249.	7.0	44
72	Ter94 ATPase Complex Targets K11-Linked Ubiquitinated Ci to Proteasomes for Partial Degradation. Developmental Cell, 2013, 25, 636-644.	7.0	43

#	Article	IF	Citations
73	Irx3 is required for postnatal maturation of the mouse ventricular conduction system. Scientific Reports, 2016, 6, 19197.	3.3	42
74	Identification of GLI Mutations in Patients With Hirschsprung Disease That Disrupt Enteric Nervous System Development in Mice. Gastroenterology, 2015, 149, 1837-1848.e5.	1.3	40
75	Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Developmental Cell, 2019, 48, 167-183.e5.	7.0	39
76	Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development. Developmental Cell, 2020, 52, 647-658.e6.	7.0	39
77	Ptch2 shares overlapping functions with Ptch1 in Smo regulation and limb development. Developmental Biology, 2015, 397, 191-202.	2.0	38
78	Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Reports, 2020, 31, 107521.	6.4	37
79	Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nature Communications, 2019, 10, 4647.	12.8	35
80	Epidermal hyperplasia and expansion of the interfollicular stem cell compartment in mutant mice with a C-terminal truncation of Patched1. Developmental Biology, 2007, 308, 547-560.	2.0	31
81	Activation of Hedgehog Signaling Promotes Development of Mouse and Human Enteric Neural Crest Cells, Based on Single-Cell Transcriptome Analyses. Gastroenterology, 2019, 157, 1556-1571.e5.	1.3	31
82	<scp>IRX3</scp> and <scp>IRX5</scp> Inhibit Adipogenic Differentiation of Hypertrophic Chondrocytes and Promote Osteogenesis. Journal of Bone and Mineral Research, 2020, 35, 2444-2457.	2.8	31
83	Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Developmental Biology, 2007, 302, 345-355.	2.0	29
84	Patched 1 and Patched 2 Redundancy Has a Key Role in Regulating Epidermal Differentiation. Journal of Investigative Dermatology, 2014, 134, 1981-1990.	0.7	29
85	GLI2 Modulated by SUFU and SPOP Induces Intestinal Stem Cell Niche Signals in Development and Tumorigenesis. Cell Reports, 2019, 27, 3006-3018.e4.	6.4	29
86	Identification and expression of zebrafish Iroquois homeobox gene irx1. Development Genes and Evolution, 2001, 211, 442-444.	0.9	27
87	Presence of isl-1-related LIM Domain Homeobox Genes in Teleost and Their Similar Patterns of Expression in Brain and Spinal Cord. Journal of Biological Chemistry, 1995, 270, 3335-3345.	3.4	26
88	Dynamic expression patterns of Irx3 and Irx5 during germline nest breakdown and primordial follicle formation promote follicle survival in mouse ovaries. PLoS Genetics, 2018, 14, e1007488.	3.5	25
89	Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Scientific Reports, 2019, 9, 2479.	3.3	22
90	The Iroquois homeobox proteins IRX3 and IRX5 have distinct roles in Wilms tumour development and human nephrogenesis. Journal of Pathology, 2019, 247, 86-98.	4.5	20

#	Article	IF	Citations
91	Evidence for the differential regulation of Nkx-6.1 expression in the ventral spinal cord and foregut by Shh-dependent and -independent mechanisms. Genesis, 2000, 27, 6-11.	1.6	19
92	Antagonistic and Cooperative Actions of Kif7 and Sufu Define Graded Intracellular Gli Activities in Hedgehog Signaling. PLoS ONE, 2012, 7, e50193.	2.5	18
93	Differential regulation of Gli proteins by Sufu in the lung affects PDGF signaling and myofibroblast development. Developmental Biology, 2014, 392, 324-333.	2.0	18
94	Irx3 and Irx5 in Ins2-Cre+ cells regulate hypothalamic postnatal neurogenesis and leptin response. Nature Metabolism, 2021, 3, 701-713.	11.9	18
95	Sufu and Kif7 in limb patterning and development. Developmental Dynamics, 2015, 244, 468-478.	1.8	15
96	Tibial hemimelia associated with GLI3 truncation. Journal of Human Genetics, 2016, 61, 443-446.	2.3	15
97	Primordial germ cell proliferation is impaired in Fused Toes mutant embryos. Developmental Biology, 2011, 349, 417-426.	2.0	14
98	Adult Gli2+/–;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation. PLoS ONE, 2016, 11, e0165958.	2.5	14
99	Suppressor of Fused (Sufu) Mediates the Effect of Parathyroid Hormone-like Hormone (Pthlh) on Chondrocyte Differentiation in the Growth Plate. Journal of Biological Chemistry, 2012, 287, 36222-36228.	3.4	13
100	T396I Mutation of Mouse Sufu Reduces the Stability and Activity of Gli3 Repressor. PLoS ONE, 2015, 10, e0119455.	2.5	12
101	Kv4.3-Encoded Fast Transient Outward Current Is Presented in Kv4.2 Knockout Mouse Cardiomyocytes. PLoS ONE, 2015, 10, e0133274.	2.5	12
102	IRX3 and IRX5 collaborate during ovary development and follicle formation to establish responsive granulosa cells in the adult mouseâ€. Biology of Reproduction, 2020, 103, 620-629.	2.7	10
103	Irx3 and Irx5 - Novel Regulatory Factors of Postnatal Hypothalamic Neurogenesis. Frontiers in Neuroscience, 2021, 15, 763856.	2.8	10
104	Phenotypic differences in the brains and limbs of mutant mice caused by differences of Gli3 gene expression levels. Congenital Anomalies (discontinued), 2001, 41, 89-94.	0.6	9
105	The two domain hypothesis of limb prepattern and its relevance to congenital limb anomalies. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e270.	5.9	9
106	Genetic interaction between Gli3 and Ezh2 during limb pattern formation. Mechanisms of Development, 2018, 151, 30-36.	1.7	8
107	Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Molecular Metabolism, 2021, 47, 101185.	6.5	6
108	Ectopic expression of <i>lrx3</i> and <i>lrx5</i> in the paraventricular nucleus of the hypothalamus contributes to defects in <i>Sim1</i> haploinsufficiency. Science Advances, 2021, 7, eabh4503.	10.3	5

#	Article	IF	CITATIONS
109	IRX3/5 regulate mitotic chromatid segregation and limb bud shape. Development (Cambridge), 2020, 147,	2.5	4
110	BCC or not: Sufu keeps it in check. Oncoscience, 2015, 2, 77-78.	2.2	4
111	Ciliary protein Kif7 regulates Gli and Ezh2 for initiating the neuronal differentiation of enteric neural crest cells during development. Science Advances, 2021, 7, eabf7472.	10.3	2
112	A genetic female mouse model with congenital genitourinary anomalies and adult stages of urinary incontinence. Neurourology and Urodynamics, 2017, 36, 1981-1987.	1.5	1
113	Irx5 and transient outward K ⁺ currents contribute to transmural contractile heterogeneities in the mouse ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H725-H741.	3.2	1
114	Cover Image, Volume 6, Issue 4. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e285.	5.9	0
115	MON-229 IRX3 and IRX5 Regulate Downstream Targets that Promote Ovarian Follicle Integrity in Mice. Journal of the Endocrine Society, 2019, 3, .	0.2	0
116	STEM-26. BLOOD-TUMOR BARRIER IS COMPOSED OF MECHANOSENSING TUMOR CELLS THAT MASK THERAPEUTIC VULNERABILITY. Neuro-Oncology, 2021, 23, vi26-vi26.	1.2	0